

2009-12

Using the Dynamic Cone Penetrometer and Light Weight Deflectometer for Construction Quality Assurance

Take the Construction steps... Research...Knowledge...Innovative Solutions!

Transportation Research

Technical Report Documentation Page

4. Tide and Subtile 5. Report Due February 2009 9. Deflectometer for Construction Quality Assurance 5. Report Due February 2009 7. Author() 8. Performing Organization Report No. John Sickmeier, Cassandra Pinta, Scott Merth, Julie Jensen, Peter Davich, Felipe Camargo, Matthew Beyer 10. ProjectTaskWork Unit No. 9. Performing Organization Name and Address 10. ProjectTaskWork Unit No. Minnesota Department of Transportation 14:00 Gervais Ave. 11. Contract (C) or Grant (G) No. 14:00 Gervais Ave. (c) LAB860 11: Sponsoring Organization Name and Address 11. Contract (C) or Grant (G) No. 14:00 Gervais Ave. (c) LAB860 12: Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota 55109 14. Sponsoring Agency Code 13: Supplementary Notes 14. Sponsoring Agency Code 14: Aburnet Junit: 200 work) 20. Security Caster Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content. For compacted fine grained soil, the plastic limit and field moisture content are used to determine the target values. A sieve analysis is used to detastify the soil and to estimate the optimum moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity	1. Report No. MN/RC 2009-12	2.	3. Recipients Accession No.					
Using the Dynamic Cone Penetrometer and Light Weight Deflectometer for Construction Quality Assurance February 2009 7. Author(s) 8. Performing Organization Report No. John Sickmeier, Cassandra Pinta, Scott Merth, Julie Jensen, Peter Davich, Felipe Camargo, Matthew Beyer 10. Project/Task/Work Unit No. 9. Performing Organization Name and Adress 10. Project/Task/Work Unit No. Office of Materials and Road Research Minnesota Department of Transportation 1400 Gervais Ave. 11. Contract (C) or Grant (G) No. (c) LAB860 12. Sponsoring Organization Name and Adress 13. Type of Report and Period Covered Final Report 13. Supplementary Notes 14. Sponsoring Agency Code St. Paul, Minnesota 55155 14. Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Notes 16. Astract (Limit: 200 words) 14. Sponsoring Agency Code Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the ensuring penetration and deflection, the moisture content measins in penerations. Therefore, the moisture content remains a cr	4. Title and Subtitle		5. Report Date					
Deflectometer for Construction Quality Assurance b. 7. Aubor(s) 8. Performing Organization Report No. John Sickmeier, Cassandra Pinta, Scott Merth, Julie Jensen, Peter Davich, Felipe Camargo, Matthew Beyer 9. Project/Task/Wok Unit No. 9. Performing Organization Name and Address 10. Project/Task/Wok Unit No. Minnesota Department of Transportation 11. Contract (C) or Grant (0) No. 1400 Gervais Avec. (c) LAB860 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota Department of Transportation 13. Type of Report and Period Covered 15. Supplementary Notes 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code 16. Abstract (Linit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and and over dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflecti	Using the Dynamic Cone Penetror	neter and Light Weight	February 2009					
7. Author(s) 8. Performing Organization Report No. John Siekmeier, Cassandra Pinta, Scott Merth, Julie Jensen, Peter Davich, Felipe Camargo, Matthew Beyer 9. Performing Organization Name and Address Office of Materials and Road Research 10. Project/Task/Work Unit No. Minnesota Department of Transportation 14.06 Gervais Ave. Maplewood, Minnesota 55109 13. Type of Report and Period Covered 7. Author(N) 13. Type of Report and Period Covered Final Report 13. Symptometry Notes Minnesota Department of Transportation 14. Sponsoring Organization Name and Address Minnesota Department of Transportation 13. Type of Report and Period Covered Final Report 13. Symptometry Notes http://www.htmb.org/PDF/200912.pdf 16. Abstract (Linit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and relied moisture content. For compacted fine grained soil, the plastic limit used to leasting the soil and to estimate the optimum moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modu	Deflectometer for Construction Qu	uality Assurance	0.					
John Siekmeier, Cassandra Pinta, Scott Merth, Julie Jensen, Peter Davich, Felipe Camargo, Matthew Beyer Project/Task/Work Unit No. Office of Materials and Road Research Minnesota Department of Transportation How Cord Grant (G) No. Contract (C) or Grant (G) No. Contract (G) No. Contred (G) No. Contract (G) No.	7. Author(s)		8. Performing Organization Report No.					
Peter Davich, Felipe Camargo, Matthew Beyer 9. Performing Organization Name and Adtress Office of Materials and Road Research Minnesota Department of Transportation 1400 Gervais Ave. Maplewood, Minnesota 55109 11. Contract (C) or Grant (G) No. (c) LAB860 12. Sponsoring Organization Name and Adtress Minnesota Department of Transportation 395 John Ireland Boulevard, Mail Stop 330 St. Paul, Minnesota 5515 15. Supplementary Notes http://www.lrrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 worki) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the field moisture content for compacted fine grained soil, the plastic limit and field moisture content for compacted materials. More specifically, the soil and to estimate the optimum moisture content for compaction. This report also provides further standardization of the LWD and DCP are performance related construction quality assurance tests that are expected to: increase compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity. 17. Document Analysis/Descriptors 10. Project/Task/Work Unit N	John Siekmeier, Cassandra Pinta,	Scott Merth, Julie Jensen,						
9. Performing Organization Name and Address 10. Project/Task/Work Unit No. Office of Materials and Road Research 11. Contract (C) or Grant (G) No. Minnesota Department of Transportation 11. Contract (C) or Grant (G) No. 1400 Gervais Ave. (c) LAB860 Minnesota Department of Transportation 13. Type of Report and Period Covered Final Report 14. Sponsoring Agency Code 395 John Ireland Boulevard, Mail Stop 330 14. Sponsoring Agency Code St. Paul, Minnesota 55155 14. Sponsoring Agency Code 16. Abstract (Limit: 200 words) 15. Supplementary Notes http://www.trb.org/PDF/200912.pdf 14. Sponsoring Agency Code 16. Abstract (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. The LWD and DCP are pe	Peter Davich, Felipe Camargo, Ma	atthew Beyer						
Office of Materials and Road Research II. Contract (C) or Grant (G) No. Minnesota Department of Transportation III. Contract (C) or Grant (G) No. 1400 Gervais Ave. (c) LAB860 Minnesota Department of Transportation 13. Type of Report and Period Covered Final Report 395 John Ireland Boulevard, Mail Stop 330 St. Paul, Minnesota 55155 14. Sponsoring Agency Code 15. Supplementary Notes http://www.lrrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 work) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A size we analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. The LWD and DCP are performance related construction quality assurance tor situe content needs to be measured, or presence at the construction site, improve documentation, and increase inspector safety and productivity. 17. Document Analysis/Descriptors 18. Availability Statement 19. Security Class (this	9. Performing Organization Name and Address		10. Project/Task/Work Unit	No.				
Minnesota Department of Transportation 11. Contract (C) or Grant (G) No. 1400 Gervais Ave. (c) LAB860 12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota Department of Transportation 395 John Ireland Boulevard, Mail Stop 330 14. Sponsoring Agency Code St. Paul, Minnesota 5515 15. Supplementary Notes 14. Sponsoring Agency Code St. Paul, Minnesota field moisture content are used to select the dynamic cone penetrometer (DCP) and light 14. Sponsoring Agency Code Steater (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the target values. The plastic limit is used to classify the soil and to estimate the optimum moisture content for compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance, compaction light weight deflectometer, in stitu test	Office of Materials and Road Rese	earch						
1400 Gervais Ave. (c) LAB860 Maplewood, Minnesota 55109 (c) LAB860 12. Sponsoring Organization Name and Adress 13. Type of Report and Period Covered Minnesota Department of Transportation 395 John Ireland Boulevard, Mail Stop 330 14. Sponsoring Agency Code St. Paul, Minnesota 55155 15. Supplementary Notes 14. Sponsoring Agency Code 15. Supplementary Notes http://www.irrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance, compaction performance related specifications. Surface (Limit Statement Myrais/Descriptors Dynamic cone penetrometer, light weight deflectometer, in situt testing, pavement foundations, construction	Minnesota Department of Transpo	ortation	11. Contract (C) or Grant (G)) No.				
Maplewood, Minnesota 55109 13. Type of Report and Period Covered Final Report 13. Type of Report and Period Covered Sponsoring Agency Code 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code http://www.lrrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content remains a critical quality control parameter for all compaction operations. Therefore, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance tests that are expected to: increase compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity. 17. Document Analysis/Descriptors 18. Availability Statement <t< td=""><td>1400 Gervais Ave.</td><td></td><td>(c) LAB860</td><td></td></t<>	1400 Gervais Ave.		(c) LAB860					
12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered Minnesota Department of Transportation 14. Sponsoring Agency Code 395 John Ireland Boulevard, Mail Stop 330 14. Sponsoring Agency Code St. Paul, Minnesota 55155 14. Sponsoring Agency Code 15. Supplementary Notes 14. Sponsoring Agency Code http://www.lrrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance tests that are expected to: increase compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity. 17. Document Analysis/Descriptors Norestriction	Maplewood, Minnesota 55109							
Minnesota Department of Transportation Final Report 395 John Ireland Boulevard, Mail Stop 330 I4. Sponsoring Agency Code St. Paul, Minnesota 55155 I4. Sponsoring Agency Code 15. Supplementary Notes http://www.lrrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content remains a critical quality control parameter for all compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity. 17. Document Analysis/Descriptors 18. Availability Statement Dynamic cone penetrometer, light weight deflectometer, in situ testing, pavement foundations, construction quality assurance, compaction, performance related specifications 18. Availability Statement No restrictions, Document avail	12. Sponsoring Organization Name and Addres	38	13. Type of Report and Perio	d Covered				
395 John Ireland Boulevard, Mail Stop 330 14. Sponsoning Agency Code St. Paul, Minnesota 55155 15. Supplementary Notes http://www.lrrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content remains a critical quality control parameter for all compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity. 17. Document Analysis/Descriptors 18. Availability Statement Dynamic cone penetrometer, light weight deflectometer, in situ testing, pavement foundations, construction quality assurance, compaction, performance related specifications 18. Availability Statement 19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price	Minnesota Department of Transpo	ortation	Final Report					
St. Paul, Minnesota 55155 15. Supplementary Notes http://www.lrrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content the target values. The plastic limit is used to classify the soil and to estimate the optimum moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content remains a critical quality control parameter for all compaction operations. Therefore, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance tests that are expected to: increase compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity. 17. Document Analysis/Descriptors 18. Availability Statement Dynamic cone penetrometer, light weight deflectometer, in situ testing, pavement foundations, construction quality assurance, compaction, performance related specifications 21. No. o	395 John Ireland Boulevard, Mail	Stop 330	14. Sponsoring Agency Code	5				
15. Supplementary Notes http://www.lrrb.org/PDF/200912.pdf 16. Abstract (Limit: 200 words) Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content remains a critical quality control parameter for all compaction operations. Therefore, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance tests that are expected to: increase compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector sciency increase inspector science, compaction specifications 17. Document Analysis/Descriptors 18. Availability Statement Dynamic cone penetrometer, light weight deflectometer, in situ testing, pavement foundations, construction quality assurance, compaction, performance related specifications 18. Availability Statement No restrictions. Document available from: Nation	St. Paul, Minnesota 55155							
Intp://www.into.org/PDF/200912.pdf16. Abstract (Limit: 200 words)Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content are used to determine the target values. The plastic limit is used to classify the soil and to estimate the optimum moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing.The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content remains a critical quality control parameter for all compaction operations. Therefore, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance tests that are expected to: increase compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity.17. Document Analysis/Descriptors Dynamic cone penetrometer, light weight deflectometer, in situ testing, pavement foundations, construction quality assurance, compaction, performance related specifications18. Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 2216119. Security C	15. Supplementary Notes	- df						
Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content are used to determine the target values. The plastic limit is used to classify the soil and to estimate the optimum moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance tests that are expected to: increase compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity.17. Document Analysis/Descriptors Dynamic cone penetrometer, light weight deflectometer, in situ testing, pavement foundations, construction quality assurance, compaction, performance related specifications18. Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 2216119. Security Class (this report) Unclassified20. Security Class (this page) Unclassified21. No. of Pages 24422. Price	16. Abstract (Limit: 200 words)	501						
17. Document Analysis/Descriptors 18. Availability Statement Dynamic cone penetrometer, light weight deflectometer, in situ No restrictions. Document available from: testing, pavement foundations, construction quality assurance, No restrictions. Document available from: compaction, performance related specifications Springfield, Virginia 22161 19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price Unclassified 244 244 244	Specification target values for granular materials and fine grained soils are proposed. For granular material, the grading number and field moisture content are used to select the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) target values. A sieve analysis is used to determine the grading number and an oven dry test to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content for compaction. The plastic limit is used to classify the soil and to estimate the optimum moisture content for compaction. This report also provides further standardization of the LWD and DCP testing procedures and recommends three seating drops to ensure greater uniformity during testing. The DCP and LWD estimate the strength and modulus of compacted materials. More specifically, they measure the penetration and deflection. When measuring penetration and deflection, the moisture content remains a critical quality control parameter for all compaction operations. Therefore, the moisture content needs to be measured, or estimated confidently, at each location. The LWD and DCP are performance related construction quality assurance tests that are expected to: increase compaction uniformity, lower life cycle pavement costs, increase inspector presence at the construction site, improve documentation, and increase inspector safety and productivity.							
Dynamic conception deriver on teer, inght weight deriver on teer on tee	17. Document Analysis/Descriptors	weight deflectometer in situ	18. Availability Statement	ment available from				
compaction, performance related specifications Springfield, Virginia 22161 19. Security Class (this report) 20. Security Class (this page) Unclassified 21. No. of Pages 244 22. Price	testing, pavement foundations cor	struction quality assurance	National Technical I	formation Services				
19. Security Class (this report)20. Security Class (this page)21. No. of Pages22. PriceUnclassified244244	compaction, performance related s	specifications	Springfield, Virginia	22161				
19. Security Class (this report)20. Security Class (this page)21. No. of Pages22. PriceUnclassified244								
Unclassified Unclassified 244	19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price				
	Unclassified	Unclassified	244					

Using the Dynamic Cone Penetrometer and Light Weight Deflectometer for Construction Quality Assurance

Final Report

Prepared by

John Siekmeier Cassandra Pinta Scott Merth Julie Jensen Peter Davich Felipe Camargo Matthew Beyer

Office of Materials and Road Research Minnesota Department of Transportation

February 2009

Published by

Minnesota Department of Transportation Research Services Section 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation. This report does not contain a standard or specified technique. The authors and the Minnesota Department of Transportation do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report.

The authors and the Minnesota Department of Transportation do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report.

Table of Contents

Chapter 1 –	Introduction	1
1.1	History	1
1.2	DCP Background	2
1.3	LWD Background	
1.4	Definitions	
1.5	DCP Equipment	4
1.6	LWD Equipment	6
1.7	DCP Test Procedure	7
1.8	LWD Test Procedure	8
Chapter 2 -	Soil Descriptions	11
2.1	Granular Material Description	11
2.2	Granular Material Preparation	
2.3	Fine Grained Soil Description	14
2.4	Fine Grained Soil Preparation	15
Chapter 3 -	DCP for Select Granular and Granular Materials	17
3.1	Discussion	17
3.2	Conclusion	
Chapter 4 -	LWD for Select Granular and Granular Materials	
4.1	Discussion	
4.2	Conclusion	
Chapter 5 -	DCP for Fine Grained Soils	
5.1	Discussion	
5.2	Conclusion	
Chanter 6 -	LWD for Fine Grained Soils	34
6.1	Discussion	
6.2	Conclusion	
Chantor 7	Target Values and Conclusion	27
	Packground	
/.1	Daukgi ouliu	

References		. 48
7.4	Conclusion	. 47
7.3	Fine Grained Target Values	. 39
7.2	Granular Target Values	. 37

- Appendix A: Analysis of LWD Energy Distribution
- Appendix B: Analysis of LWD Load Estimation for Granular Material
- Appendix C: Analysis of LWD Load Estimation for Fine Grained Soil
- Appendix D: Influence of LWD Drop Height on Force, Deflection, and Modulus
- Appendix E: Using the Plastic Limit to Estimate Optimum Moisture Content
- **Appendix F: Commentary of LWD Loading Method**
- Appendix G: DPI versus Depth Charts for Dynamic Cone Penetrometer Tests
- **Appendix H: Select Granular and Granular Material Data**
- **Appendix I: Fine Grained Soil Data**
- Appendix J: Modified DCP Procedure 2005-06
- **Appendix K: Field Data Sheets**
- **Appendix L: Construction Site Analysis of Target Values**

List of Tables

Table 1.1.	LWD models	7
Table 2.1.	Select granular and granular index properties	
Table 2.2.	Select granular and granular moisture contents and densities	13
Table 2.3.	Fine grained index parameters	14
Table 2.4.	Fine grained specimen moisture content and density values	15
Table 7.1.	Target DPI and LWD modulus values for granular materials	39
Table 7.2.	Target DPI and LWD modulus values for fine grained soils	40

List of Figures

Figure 1.1. Photos of the dynamic cone penetrometer	5
Figure 1.2. Photo of light weight deflectometer	6
Figure 2.1. Plot of granular sample gradations	11
Figure 2.2. Plot of fine grained soil gradations	14
Figure 3.1. Sample DPI versus depth plot	17
Figure 3.2. Effects of seating drops and weighting on the DPI	18
Figure 3.3. Effects of percent of optimum moisture content and relative compaction on	
average DPI for select granular sample DN	19
Figure 3.4. Effects of percent of optimum moisture content and relative compaction on	
average DPI for granular sample FHJ	20
Figure 3.5. Effects of percent of optimum moisture content and relative compaction on	
average DPI for select granular sample KLO	20
Figure 3.6. Effects of percent of optimum moisture content and relative compaction on	
DCP modulus for select granular sample DN	21
Figure 3.7. Effects of percent of optimum moisture content and relative compaction on	
DCP modulus for granular sample FHJ	22
Figure 3.8. Effects of percent of optimum moisture content and relative compaction on	
DCP modulus for select granular sample KLO	22
Figure 4.1. Effects of percent of optimum moisture content and relative compaction on	
LWD modulus for select granular sample DN	24
Figure 4.2. Effects of percent of optimum moisture content and relative compaction on	
LWD modulus for granular sample FHJ	25
Figure 4.3. Effects of percent of optimum moisture content and relative compaction on	
LWD modulus for select granular sample KLO	25
Figure 5.1. Sample DPI versus depth plot	27
Figure 5.2. Effects of percent of optimum moisture content and relative compaction on	
average DPI for fine grained sample MnROAD	28
Figure 5.3. Effects of percent of optimum moisture content and relative compaction on	
average DPI for fine grained sample Duluth	29
Figure 5.4. Effects of percent of optimum moisture content and relative compaction on	
average DPI for fine grained sample Red Wing	29
Figure 5.5. Effects of percent of optimum moisture content and relative compaction on	
average DPI for fine grained sample Red Lake Falls	30
Figure 5.6. Effects of percent of optimum moisture content and relative compaction on	
DCP modulus for fine grained sample MnROAD	31
Figure 5.7. Effects of percent of optimum moisture content and relative compaction on	
DCP modulus for fine grained sample Duluth	31
Figure 5.8. Effects of percent of optimum moisture content and relative compaction on	
DCP modulus for fine grained sample Red Wing	32
Figure 5.9. Effects of percent of optimum moisture content and relative compaction on	22
DCP modulus for fine grained sample Red Lake Falls	32
Figure 6.1. Effects of percent of optimum moisture content and relative compaction on	
LWD modulus for fine grained sample MnROAD	34

Figure 6.2. Effects of percent of optimum moisture content and relative compaction on	
LWD modulus for fine grained sample Duluth	35
Figure 6.3. Effects of percent of optimum moisture content and relative compaction on	
LWD modulus for fine grained sample Red Wing	35
Figure 6.4. Effects of percent of optimum moisture content and relative compaction on	
LWD modulus for fine grained sample Red Lake Falls	36
Figure 7.1. DCP and LWD modulus comparison	37
Figure 7.2. Effects of percent of optimum moisture content and relative compaction on	
average DPI target values for fine grained soils	41
Figure 7.3. Effects of percent of optimum moisture content and relative compaction on	
LWD modulus values for fine grained soils	41
Figure 7.4. Average DPI versus percent of optimum moisture content and plastic limit for	
fine grained soils	42
Figure 7.5. Average DPI simplified target values versus percent of optimum moisture	
content and plastic limit for fine grained soils	43
Figure 7.6. LWD modulus versus percent of optimum moisture content and plastic limit	
for fine grained soils	44
Figure 7.7. DCP Modulus calculated from DPI versus percent of optimum moisture	
content and plastic limit for fine grained soils	45
Figure 7.8. DCP Modulus calculated from simplified DPI versus percent of optimum	
moisture content and plastic limit for fine grained soils	46
Figure 7.9. Prima modulus simplified target values versus percent of optimum moisture	
content and plastic limit for fine grained soils	46

Executive Summary

The final products resulting from this research implementation project are the specification target values for both granular materials and fine grained soils. For compacted granular material, the grading number and field moisture content are used to select the appropriate DCP and LWD target value. A sieve analysis is used to determine the grading number and an oven dry test or reagent test is typically performed to determine the field moisture content. For compacted fine grained soil, the plastic limit and field moisture content are used to determine DCP and LWD target values. In this case, the plastic limit is used rather than the grading number to classify the soil and is also used to estimate the optimum moisture content for compaction.

In addition to these target values, this report provides further standardization of the testing procedures for both the LWD and DCP. This will ensure greater uniformity by personnel conducting these tests. Currently, the method for obtaining a DPI value is varied, involving different numbers of seating drops and measurement drops. Using three seating drops and five to ten measurement drops, depending on the material type, is recommended in this report.

LWD testing includes variations as well and the Mn/DOT Grading and Base section is currently defining the seating depth and other aspects of the procedure for implementation during the 2009 construction season. The LWD device is currently non-standardized nationally, allowing manufacturers to develop different models, which produce different measurements. Because Mn/DOT has decided to establish predetermined target values it is necessary to select a specific LWD such that the buffer and plate stiffnesses are also constant along with the specified falling mass, peak force, and plate diameter.

This project leveraged previous research sponsored by Mn/DOT and the LRRB. One primary resource was report 2006-20, *Validation of DCP and LWD Moisture Specifications for Granular* <u>Materials</u>. Two other studies also drawn upon extensively to better understand the effect of soil moisture on stiffness and strength were reports: 2006-26, <u>Moisture Effects on PVD and DCP</u> <u>Measurements</u> and 2007-11, <u>Pavement Design Using Unsaturated Soil Technology</u>.

In conclusion, LWDs and DCPs should be implemented more widely in the state of Minnesota. This should be done using the standardized testing procedures and the defined target values in this report as reasonable starting points from which project specific verification or modification would occur. The recommended target values in this report are intended to be estimates that need to be verified as appropriate for specific projects. The draft specification produced by this project will be further refined and incorporated into Mn/DOT's *Standard Specifications, Grading and Base Manual, and Geotech and Pavement Manual,* as well as the inspector and technician certification classes already required for DCP and LWD use. As the benefits of these technologies become increasingly apparent, more counties, cities, and consultants are expected to acquire these tools.

Chapter 1 – Introduction

The Minnesota Local Road Research Board (LRRB) and the Minnesota Department of Transportation (Mn/DOT) continue to strive to improve testing methods for unbound materials during pavement construction. Mn/DOT has implemented the dynamic cone penetrometer (DCP) and light weight deflectometer (LWD) in place of current methods on many projects. This report discusses DCP and LWD use and recommends standard test methods and model specifications for quality assurance. When compared to current practices, these performance related testing methods are expected to:

- Increase compaction uniformity
- Lower life cycle pavement costs
- Increase inspector presence at the construction site
- Improve inspector safety
- Increase productivity due to less time per test
- Improve documentation and reporting.

1.1 History

Mn/DOT has traditionally verified the quality of pavement foundations by comparing lift densities to a "relative maximum" density identified for each unbound material. In order to calculate the relative maximum density, Mn/DOT's Standard Specifications for Construction require that samples of potential subbase and soil foundation materials be compacted at different moisture contents using standard Proctor effort. The dry densities of the resulting laboratory specimens are calculated and plotted versus moisture content. A curve is fit through the data and the peak represents an optimum moisture content and a maximum dry density for this method of compaction known as the standard Proctor test (ASTM D698, AASHTO T99, Mn/DOT Grading and Base Manual).

A sand cone test (ASTM D 1556-00) is performed on a lift of material in the field to determine whether its density meets or exceeds a designated percentage of the standard Proctor maximum density. The test is performed by scooping a small amount of material from the compacted layer and carefully filling the hole created with a measurable mass of sand. Because the sand used in these tests has a known density, the volume of the hole can be calculated. The density of the layer is calculated using this volume and the dry weight of the material removed from the hole. Compaction is deemed acceptable if the density measured during the sand cone test meets or exceeds a particular percentage (usually 100 percent) of the standard Proctor maximum density. This process is known as the specified density method (Mn/DOT Standard Specification 2105.3 F1).

While the specified density method is simple in theory and still widely practiced in the United States (using a nuclear density gauge), it presents a number of challenges for inspectors and designers. On a practical level, sand cone tests are time consuming, imprecise even when performed by skilled inspectors, difficult to perform in materials containing large aggregate

particles, and responsible for placing inspectors in unsafe, low-visibility positions. The Proctor test is limited in that it determines the density of a variable material from a very small sample. More Proctor tests could be performed to increase the statistical confidence, but this is impractical as the tests are time consuming (Davich *et al.*, 2006). In addition, the impact method of compaction and the energy applied during the standard Proctor test, which was first implemented more than half a century ago, does not accurately represent the range of compaction methods and energy levels currently applied on construction sites.

Other problems with the specified density method arise from the pavement performance perspective. While relatively easy to understand, a material's density can be a poor indicator of performance compared to parameters such as stiffness and strength, which are sensitive to both moisture content and stress state. Variations in density can have relatively large effects on the properties that determine pavement performance. Therefore, the errors that accumulate during the specified density procedure have the potential to greatly influence the load bearing capacity of the pavement foundation materials. Lastly, design engineers would be better equipped to adapt pavement designs to differing conditions, soil classifications, construction methods, and other innovations if stiffness and strength parameters were used in place of density.

To take advantage of these possibilities, highway agencies, universities, and equipment manufactures have developed in situ test devices designed to measure the strength and modulus, (more specifically, the penetration rate or deflection) of compacted materials. These devices use several methods to calculate modulus. Some, such as the LWD and the falling weight deflectometer (FWD), use falling weights to generate a soil response. The DCP and rapid compaction control device (RCCD), drive a cone into the soil to produce a measure of shear strength. Whether measuring density, modulus, or shear strength, the moisture content remains a critical quality control parameter for all compaction operations regardless of the quality control and quality assurance test methodology. Therefore, the moisture content needs to be measured, or estimated with a high degree of confidence, at each location.

1.2 DCP Background

Mn/DOT implemented an aggregate base quality assurance specification for the DCP in 1998. The DCP's falling mass drops from a specified height to drive the cone into the pavement foundation material. The DCP penetration distance per drop is known as the DCP penetration index (DPI). The DPI is used to estimate the shear strength and modulus of unbound materials using empirical relationships.

The original DCP specification was designed for use on aggregate base. This specification was later modified to take gradation and moisture effects into account in order to increase its accuracy and expand its applications to other granular materials. Both the grading number and moisture content have a strong influence on the DPI, and therefore, target DPI values are determined according to a soil's grading number and moisture content (Oman, 2004).

1.3 LWD Background

The FWD is a larger trailer mounted device that estimates the in situ modulus of a material using the impulse load produced by the impact of a falling weight. FWDs are particularly useful for estimating the moduli of asphalt, aggregate base, granular subbase and subgrade pavement layers. These trailer-mounted units use a large weight, load cell, and several geophones to calculate the layer moduli through a back-calculation procedure and are most commonly used to investigate pavement moduli following construction of the complete pavement structure. While FWDs work well on finished pavement structures, FWDs are difficult to use on aggregate base, granular subbase, and soil subgrade due to the irregular surface and the difficulty of maneuvering the FWD trailer on an active construction site. Therefore, a second generation of portable FWD devices was developed to meet this need.

The portable FWD, now commonly referred to as a light weight deflectometer (LWD) (ASTM E 2583-07), consists of a lighter mass (often 10 kg), an accelerometer or geophone, and a data collection unit. LWDs are designed to be light enough to be moved and operated by one person. LWDs are often used to spot check unbound material compaction in parts of Europe (Fleming *et al.*, 2007), and are beginning to be used in the United States (Mooney *et al.*, 2008 and White *et al.*, 2007, 2009).

Mn/DOT has purchased several dozen LWDs and is in the process of refining its specification. An important issue that has arisen during the implementation of LWD technology is whether or not it is necessary to measure, or if it is acceptable to estimate, the load generated by the falling weight. This load estimation is not necessary for all LWD models because some include a load cell that measures the load as a function of time during impact. Other LWDs use one fixed peak load estimate, which is determined during trial testing in the laboratory (see Appendix B and C).

LWD quality assurance procedures offer several advantages over the specified density method. On a practical level, LWD tests take less time, have greater precision, and are able to accurately test more material types. For example, large aggregate creates problems for other tests. In addition, LWD testing is safer because the field inspector is able to remain standing and visible during most of the testing process (Davich *et al.*, 2006).

1.4 Definitions

There is some ambiguity regarding the terminology applied to quality assurance testing and mechanistic pavement design. To provide consistency, the following terms have been defined (Newcomb and Birgisson, 1999):

• *Elastic Modulus* – The applied axial stress divided by the resulting axial strain within the linear range of stress-strain behavior of a material.

• *Modulus of Subgrade Reaction* – The applied stress imposed by a loaded plate of a specified dimension acting on a soil mass divided by the displacement of the plate within the linear portion of the stress-deformation curve.

• *Resilient Modulus* – The stress generated by an impulse load divided by the resulting recoverable strain after loading.

• Shear Strength – A combination of a material's interparticle friction and its cohesion in resisting deformation from an applied stress. This is the largest stress that the material can sustain.

• *Stiffness* – A qualitative term meaning a general resistance to deformation. It is often used interchangeably with elastic modulus, modulus of subgrade reaction, and resilient modulus. It largely determines the strains and displacements of the subgrade as it is loaded and unloaded.

1.5 DCP Equipment

The structure of the DCP consists of two vertical shafts connected to each other at the anvil (ASTM D 6951-03). The upper shaft has a handle and hammer. The handle is used to provide a standard drop height of 575 mm (22.6 in) for the hammer as well as a way for the operator to easily hold the DCP vertical. The hammer is 8 kg (17.6 lb) and provides a constant impact force. The lower shaft has an anvil at the top and a pointed cone on the bottom. The anvil stops the hammer from falling any further then the standard drop height. When the hammer is dropped and hits the anvil, the cone is driven into the ground. Photos of the DCP are shown in Figure 1.1.

Figure 1.1. Photos of the dynamic cone penetrometer

There are a few configuration options available for the DCP, which include changing the mass of the hammer, type of tip, and recording method. The standard hammer mass is 8 kg, but there is also a 4.6 kg alternative. For pavement applications, the 8 kg mass is used due to the highly compacted soil. The DCP tip can either be a replaceable point or a disposable cone. The replaceable point stays on the DCP for an extended period of time, until damaged or worn beyond a defined tolerance, and then replaced. The disposable cone remains in the soil after every test, making it easier to remove the DCP. A new disposable cone must be placed onto the DCP before the next test. Manual or automated methods are available to gather penetration measurements. The reference ruler can be attached or unattached to the DCP. The automated ruler provides equivalent results as the reference ruler, but allows for a single operator instead of two. It also electronically records the data, making it more practical to record the penetration for each drop of the hammer and transfer the data to other computing devices.

1.6 LWD Equipment

There are several types of LWDs. The following is a general description of the LWD shown in Figure 1.2. Moving from top to bottom, the handle is used to keep the shaft vertical. Next along the shaft is a release trigger, which holds the mass in place prior to dropping, thereby ensuring a standard drop height. The mass is dropped to provide an impact force. Buffers, made of either rubber pads or steel springs, catch the falling mass and transfer the impact force to the loading plate. Below the buffers is a measurement device that measures the deflection, and for some models the force. On the bottom there is a loading plate, which must be in full contact with the ground.

Figure 1.2. Photo of light weight deflectometer

Seven LWD models have been (or are being) used in Minnesota and there are a variety of differences between these devices shown in Table 1.1. Please note that Mn/DOT currently

supports only the ZFG 2000 for quality assurance in order to achieve measurement consistency state-wide.

Measurement differences are caused by several factors. LWDs can have a fixed drop height, while others have adjustable drop heights. Some measure deflection using an accelerometer fixed inside the load plate, while others use a geophone that passes through a hole on the bottom of the plate to directly contact the surface. Some assume a peak load established during trial testing, while others include a load cell. Finally, the buffer and plate stiffness affect how the energy of the falling mass is transferred to the ground (Mooney and Miller, 2009 and Vennapusa and White, 2009). Due to all these factors and practical considerations, Mn/DOT has elected to support only one LWD model for quality assurance testing.

	Table 1.1. LWD models									
Model	Company	Current Mn/DO-	Load Cell	Geophone	Accelerometa	Wireless	Adjustable Drop.1	Adjustable Mar	Adjustable Plate C:	All Dize
Loadman I	Al-Eng Oy				Х					
Loadman II	Al-Eng Oy	Х	Х		Х				Х	
ZFG 2000	Gerhard Zorn	Х			Х					
Prima	Carl Bro	Х	Х	Х		Х	Х	Х	Х	
LWD v1	Dynatest/ Keros	Х	Х	Х		Х	Х	Х	Х	
LWD 3031	Dynatest/ Keros	X	X	X		X	X	X	X	
Mini FWD	Keros		Х	Х			Х	Х	Х	

1.7 DCP Test Procedure

The DCP test procedure is currently standardized by both ASTM D 6951-03 and the Mn/DOT Grading and Base Manual. The following is a brief description of the test procedure used during this project.

First, the equipment should be inspected for any fatigue or damaged parts, and that all connections are securely tightened. The operator holds the device vertical by the handle on the top shaft. A second person records the height at the bottom of the anvil in reference to the ground. The operator lifts the hammer from the anvil to the handle, and then releases the hammer. The second person records the new height at the bottom of the anvil. In general, this

process is repeated until twelve drops are preformed, two for the seating, five for the first DPI calculation, and another five for the second DPI calculation. The DCP should be taken out of the newly formed hole using an extraction jack. If the tip is disposable, hitting the hammer lightly on the handle is acceptable.

Small penetration rates represent better soil compaction. The current methods of compacting pavement foundation material involve building thin individually compacted layers less than 12 inches (30 cm). This causes the material closer to the surface to be less confined and less compacted then the deeper material. Therefore, the deeper into the soil the DCP penetrates, typically, the stronger the material. For this reason, the DPI is calculated three times; once near the surface (seating drops), and twice more using the deeper drops. DPI₁ describes the soil near the surface, while DPI₂ describes the deeper soil.

$$DPI_{Seating} = \frac{D_2 - D_{initial \ reading}}{2 \ drops}$$
[1.1]

$$DPI_1 = \frac{D_7 - D_3}{5 \, drops} \tag{1.2}$$

$$DPI_2 = \frac{D_{12} - D_8}{5 \, drops}$$
[1.3]

where:

DPI = DCP penetration index [mm/drop] D_# = depth of penetration after drop number # [mm]

The modulus of the soil can be estimated using the following equation:

$$E_{DPI} = 10^{3.04758 - [1.06166 \log(DPI)]}$$
[1.4]

where:

E_{DPI} = modulus [MPa] DPI = DCP penetration index [mm/drop]

Equation 1.4 is for standard DCP equipment only (drop height of 575 mm and a hammer mass of 8 kg). Transportek, a South African research organization, derived the equation from rigorous testing (Lockwood *et al.*, 1992).

1.8 LWD Test Procedure

LWD devices are configured and used differently depending on the model and testing agency. The purpose of the details provided in this section is to make certain that LWD test procedures in the state of Minnesota are standardized. ASTM recently published a national standard for LWDs with load cells (ASTM E 2583-07). A national standard for LWDs without load cells is currently being finalized by ASTM. In another paper about to be published by ASTM, several

LWDs are compared with respect to measurement of applied force, type and location of deflection sensor, plate diameter and rigidity, and buffer stiffness (Vennapusa and White, 2009).

In the case of Zorn LWDs, the applied force from the falling mass is measured at the factory and used for all future modulus calculations for that particular LWD. Equation 1.5 can be used to estimate the applied load for Zorn LWDs.

$$F_z = \sqrt{2 \times m \times g \times h \times k}$$
[1.5]

where:

F_Z	=	estimated force [N]
m	=	mass of falling weight [kg]
g	=	acceleration due to gravity $[9.81 \text{ m/s}^2]$
h	=	drop height [m]
k	=	spring constant [362396.2 N/m]

Other LWDs include a load cell to measure the load and then combine this load with the deflection to estimate the modulus for each drop. Although it is inevitable that the applied force will not be the same for materials of different stiffnesses, White reported that the "assumption of constant applied force does not lead to significant variations in the estimated modulus" (White *et. al.*, 2007). Please see Appendix B and C for additional discussion and conclusions.

Another factor that affects the estimated modulus in all LWDs is the plate size. Equations 1.6 and 1.7 show the commonly used calculations used to estimate the modulus.

$$E_{LWD} = 2r_{p}\sigma(1 - v^{2})\frac{(1 \times 10^{6})R}{\Delta}$$
 [1.6]

$$\sigma = \frac{F}{1000\pi r_p^2}$$
[1.7]

where:

E_{LWD}	=	Young's modulus [MPa]
r _p	=	plate radius [m]
σ	=	peak stress applied to the soil [MPa]
ν	=	Poisson's ratio of the soil
R	=	plate rigidity (0.79 for rigid, 1.0 for flexible)
Δ	=	peak soil deflection [µm]
F	=	peak force applied to the soil [kN]

As previously stated, Zorn LWDs use a steel spring buffer and an accelerometer embedded in the plate, combined with double integration, to measure deflection. Other LWD models use rubber buffers and a geophone in contact with the ground, combined with single integration, to measure deflection. Previous studies have found that Dynatest/Keros moduli were about 1.75 times greater than Zorn moduli when the drop height, mass, and plate size were constant (White *et. al.*, 2007).

A previous study completed by Mn/DOT recommended standardizing the LWD mass at 10 kg (22.0 lb), the drop height at 50 cm (19.7 in), and the plate diameter at 20 cm (7.9 in) for ease of use and in order to have an appropriate influence depth to test for a lift of compacted pavement foundation material (Davich *et al.*, 2006). Plate size affects the measurement depth, confinement, and stress level applied to stress dependent materials. Standardizing the LWD plate size to 20 cm reduces these variables and allows the target modulus to be estimated. Because the buffer type affects the force delivered to the ground, Mn/DOT now specifies that a force of 6.28 kN be delivered to the ground. This equates to a stress of 0.2 MPa for a 20 cm diameter plate. LWD tests in Minnesota are currently conducted using that configuration, along with the following test guidelines and advice contained in the manufacturer's literature.

Prior to placing the LWD on the material to be tested, the surface is leveled. Particularly loose or rutted surface material is removed to a depth of about 15 cm. Three seating drops are performed prior to data collection to ensure that plastic deformation of the surface material does not affect the measurements. Once the LWD has been seated, the data collection should consist of three measurement drops. The three values resulting from these measurement drops are averaged to create one mean value for that test location. The operator will often notice that the modulus values increase slightly during the three measurement drops from a fixed height. If this increase exceeds 10 percent it is probable that the material has not been adequately compacted. Reliable measurement values cannot be obtained until the material has been corrected.

LWD devices should not be used when the temperature falls below 5 degrees Celsius (41 degrees Fahrenheit) to ensure that the device's components, particularly the rubber buffers, work as intended. There is no practical upper limit on the temperature. While most LWDs will work in the rain, it should be noted that moisture greatly affects the strength and stiffness characteristics of the unbound materials. It is necessary to measure the moisture content in conjunction with every test using an in situ moisture testing device or by removing a sample for an oven-dry test.

When control strips are used to verify the LWD target value, it is important that the layer structure of the control strip is considered. This is because deeper layers within the pavement foundation can affect LWD measurements even though the primary depth of influence is close to the plate diameter.

Chapter 2 – Soil Descriptions

This chapter describes the granular material and fine grained soils used in this report. The granular material was tested during a Mn/DOT study sponsored by the LRRB (Davich *et al.*, 2006). The fine grained soil was tested during a University of Minnesota study sponsored by Mn/DOT (Swenson *et al.*, 2006).

2.1 Granular Material Description

Mn/DOT District personnel collected granular material samples from fifteen different construction sites across Minnesota in order to represent each of the eight districts. The gradation, optimum moisture content, and standard Proctor maximum density were measured on those samples and eight of those samples were chosen for further testing and analysis (Davich *et al.*, 2006). Those same granular samples are also included in this report and are denoted as DN, FHJ, and KLO in Figure 2.1.

The eight samples were combined into blended groups of two or three samples each creating three blended group samples for testing. The group sample with the largest percent fines was labeled FHJ. In comparison to FHJ, the blended sample DN was a relatively coarse-grained and well-graded with the least percent fines. The blended sample KLO's gradation falls between the gradations of DN and FHJ, but was slightly more similar to DN. Index properties of the three blended samples are shown in Table 2.1.

Figure 2.1. Plot of granular sample gradations

Sample	Mn/DOT Class	Grading Number	% Fines [%]	Optimum Moisture Content [%]	Maximum Density Standard Proctor [kg/m ³]
DN	Select Granular	5.1	7.6	8.1	1942.4
FHJ	Granular	6.1	16.0	10.3	1753.4
KLO	Select Granular	5.4	10.6	8.8	1874.2

Table 2.1. Select granular and granular index properties

2.2 Granular Material Preparation

The test specimens were prepared in a steel cylinder (bottom half of a 55-gallon barrel) and compacted using a scaled-up Proctor hammer with a mass of 23 kg (51 lb). This hammer applied defined compaction energies by repeated drops from a standard height of 85 cm (33 in). Three different granular samples were each prepared and tested at three different moisture contents aimed to be below, near, and above the optimum moisture content obtained using the standard Proctor test. The compaction effort was adjusted to obtain the desired densities, which were targeted to be equal to or slightly greater than 100 percent of the standard Proctor "relative maximum" density. Four sand cone and thirteen oven-dry moisture content measurements were performed on each specimen in order to verify that these targets were reached uniformly within the specimen containers. Furthermore, the density of the entire barrel was calculated to verify the accuracy of the sand cone measurements. A total of twenty-two different test specimens were prepared and their densities ranged from 99 to 111 percent of the standard Proctor maximum density. Of these, six were prepared using the select granular sample denoted as DN, eight were prepared using FHJ, and eight were prepared using KLO. The measured values for each specimen are shown in Table 2.2.

Specimen	Grading Number	Optimum Moisture Content 1023	Actual Moisture Content 102	Percent of Optimum Moisture Context	Standard Procotr Density Ikor. 3	$\frac{Barrel Density}{[k_{g/m^3}]}$	Relative Barrel Compaction roc	To/1 -
DN05	5.1	8.1	5.1	62	1942.4	1988.6	103	
DN5	5.1	8.1	5.1	63	1942.4	-	-	
DN07	5.1	8.1	6.4	79	1942.4	2042.8	105	
DN7	5.1	8.1	7.2	89	1942.4	1950.7	100	
DN10	5.1	8.1	10.0	123	1942.4	1999.1	103	
DN10X2	5.1	8.1	10.0	123	1942.4	1976.2	102	
DN10S	5.1	8.1	9.7	119	1942.4	1984.9	102	
DN10C	5.1	8.1	9.2	113	1942.4	2076.0	107	
FHJ8	6.1	10.3	7.8	75	1753.4	1763.9	101	
FHJ8X1.125	6.1	10.3	7.5	73	1753.4	1819.8	104	
FHJ8X1.333	6.1	10.3	8.0	77	1753.4	1945.3	111	
FHJ8X2	6.1	10.3	8.1	78	1753.4	1839.3	105	
FHJ10	6.1	10.3	9.5	92	1753.4	1790.6	102	
FHJ11	6.1	10.3	10.6	103	1753.4	1801.9	103	
FHJ11X.5	6.1	10.3	11.4	111	1753.4	1772.5	101	
FHJ13	6.1	10.3	12.7	124	1753.4	1790.1	102	
KLO7	5.4	8.8	7.1	80	1862.3	1847.3	99	ĺ
KL07X1.33	5.4	8.8	7.1	80	1862.3	1936.6	104	Ì
KLO8X1.5	5.4	8.8	7.9	90	1862.3	1962.8	105	
KLO9	5.4	8.8	8.9	102	1862.3	1881.3	101	
KLO9X.5	5.4	8.8	8.8	100	1862.3	1881.8	101	
KLO10	5.4	8.8	10.5	119	1862.29	1915.5	103	
KLO10X.5	5.4	8.8	10.3	117	1862.3	1916.3	103	
KLO11	5.4	8.8	12.0	137	1862.3	1868.6	100	

Table 2.2. Select granular and granular moisture contents and densities

The specimens were labeled by their sample group, moisture content, and compaction effort. The letters in the specimen label identify the blended group. The first number represents the target moisture content. The last number, following an "X" in the name, is the multiplication factor that describes the relative change in compaction energy. The initial compaction energy (X1) was targeted at standard Proctor effort (600 kN-m/m³, 12,400 lbf-ft/ft³). X2 indicates that the compaction energy was 2 times standard Proctor effort, which would be 1200 kN-m/m³ (24,800 lbf-ft/ft³).

2.3 Fine Grained Soil Description

The fine grained soil samples were collected by Mn/DOT and provided to the University of Minnesota for testing (Swenson *et al.*, 2006). In order to represent the range of fine grained soils found in Minnesota, samples were obtained from four locations across the state: MnROAD, Duluth, Red Wing, and Red Lake Falls. Figure 2.2 and Table 2.3 include the gradation plots and index parameters for these four samples.

Figure 2.2. Plot of fine grained soil gradations

Namo	MnR	OAD	Duluth		Red Wing		Red Lake Falls			
Indille	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1	Trial 2	Trial 1*	Trial 2	Trial 3	Trial 4
Standard Proctor Dry Unit Weight [kg/m ³]	1720.1	1684.9	1447.8	1436.6	1789.0	1785.8	1720.1	1592.0	1527.9	1547.1
Optimum Moisture Content [%]	16.1	14.4	26.5	27.0	13.2	13.2	16.3	20.4	22.7	22.4
Liquid Limit [%]	25.8	30.5	84.9	84.3	0.0	0.0	31.8	44.4	48.4	48.9
Plastic Limit [%]	16.4	17.4	32.9	32.6	0.0	0.0	21.7	21.1	23.8	21.9
% Silt	45.3	46.0	21.2	16.9	80.4	82.4	67.0	63.8	51.4	44.1
% Clay	14.5	12.6	75.2	78.8	4.8	5.7	24.3	27.3	41.6	49.0
R-Value	17.5	15.6	12.4	9.3	54.6	52.9	25.6	17.0	10.7	9.3
Mn/DOT Textural Classification	L	L	С	С	Si	Si	SiCL	SiCL	С	С
AASHTO Group	A-4	A-6	A-7-6	A-7-6	A-4	A-4	A-4	A-7-6	A-7-6	A-7-6

Table 2.3. Fine grained index parameters

*Results from Red Lake Falls, Trial 1, did not represent soil sample well enough to include in further analysis.

Two trials were completed on each sample to verify that the index parameters were a good representation of the soil. The results from Red Lake Falls differed significantly and therefore two additional trials were done. It was concluded that data from Red Lake Falls Trial 1 did not represent the sample well and therefore the Trial 1 test results were not used in further analyses.

2.4 Fine Grained Soil Preparation

In order to ensure uniformity of the samples prior to constructing specimens at the target moisture content and density, the following process was preformed. First, the soil was passed through a 1-inch sieve to break up any large clumps. Then, the soil was oven dried in a pan for twenty-four hours at 250°F (121°C) to eliminate most of the pre-existing moisture. Finally, the soil was pulverized to ease mixing as water was added to reach the target moisture (Swenson *et al.*, 2006).

Specimens were prepared at three different moisture contents and two different densities, which resulted in a total of twenty-four specimens. The target values for the moisture contents were determined using a percentage of the optimum moisture content. The target densities were 98 and 103 percent of standard Proctor maximum relative density for all specimens excluding MnROAD, which targeted 100 and 105 percent. The average of two moisture and two density tests from each specimen are shown in Table 2.4 (Swenson *et al.*, 2006).

Once the target moisture content and density was determined for a specimen, the soil was mixed with the appropriate amount of water to obtain the desired moisture content. Next, oven-dried tests were preformed on the specimens to determine the actual moisture content. Then the soil was compacted to a depth of 27 cm (10.5 in.) in a prismatic steel container measuring 58 x 58 x 38 cm (23 x 23 x 15 in). The compaction took place with three layers each compacted by a padfoot plate fixed to the crosshead of a load frame. The padfoot plate was used to apply some kneading action to the mostly static compaction method (Swenson *et al.*, 2006).

5	^{Jpec} imen Location	Optimum Moisture Conce	Target Percent (%) Moisture Cent Optimum	Target Moisture	Actual Moisture Cont	Percent of Optimum	Standard Proctor	Target Percent Standard	Target Density	$A_{ctual} \frac{l_{kg}/m^3}{D_{chsity}}$	Standard Procine 10	[06] m.
1	MnROAD	15.3	90	13.7	14.1	92	1702.5	105	1787.6	1752.0	103	
2	MnROAD	15.3	70	10.7	11.2	73	1702.5	105	1787.6	1678.0	99	
3	MnROAD	15.3	50	7.6	7.7	50	1702.5	105	1787.6	1670.0	98	
4	MnROAD	15.3	100	15.3	15.6	102	1702.5	100	1702.5	1659.0	97	
5	MnROAD	15.3	80	12.2	11.5	/5	1702.5	100	1702.5	1685.0	99	
6	MINKOAD	15.3	60	9.2	10.9	/1	1/02.5	100	1/02.5	1587.0	93	
7	Duluth	26.8	90	24.1	23.6	88	1442.2	103	1485.5	1484.0	103	
8	Duluth	26.8	75	20.1	19.2	72	1442.2	103	1485.5	1444.0	100	
9	Duluth	26.8	60	16.1	17.4	65	1442.2	103	1485.5	1505.0	104	
10	Duluth	26.8	100	26.8	26.1	98	1442.2	98	1413.4	1399.0	97	
11	Duluth	26.8	80	21.4	22.0	82	1442.2	98	1413.4	138 / .0	96	
12	Dulun	20.8	60	10.1	10.3	01	1442.2	98	1413.4	1409.0	98	
13	Red Wing	13.2	90	11.9	11.3	86	1787.4	103	1841.0	1700.0	95	
14	Red Wing	13.2	75	9.9	9.4	71	1787.4	103	1841.0	1777.0	99	
15	Red Wing	13.2	60	7.9	8.4	64	1787.4	103	1841.0	1725.0	97	
16	Red Wing	13.2	100	13.2	12.4	94	1787.4	98	1751.7	1613.0	90	
17	Red Wing	13.2	80	10.6	10.1	77	1787.4	98	1751.7	1721.0	96	
18	Red Wing	13.2	60	7.9	8.4	64	1 /8 /.4	98	1/51./	1/05.0	95	
19	Red Lake Falls	21.8	90	19.7	16.3	75	1555.7	103	1602.3	1640.0	105	
20	Red Lake Falls	21.8	75	16.4	13.3	61	1555.7	103	1602.3	1697.0	109	
21	Red Lake Falls	21.8	60	13.1	10.6	49	1555.7	103	1602.3	1665.0	107	
22	Red Lake Falls	21.8	100	21.8	18.6	85	1555.7	98	1524.6	1609.0	103	
23	Red Lake Falls	21.8	80	17.5	14.2	65	1555.7	98	1524.6	1614.0	104	
24	Red Lake Falls	21.8	60	13.1	10.7	49	1555.7	98	1524.6	1494.0	96	

Table 2.4. Fine grained specimen moisture content and density values

The percent of optimum moisture content actually achieved in the prepared specimens varied between 49 and 102 percent. And the relative compaction for the specimens ranged from 90 to 109 percent of the standard Proctor maximum relative density (Swenson *et al.*, 2006).

Chapter 3 – DCP for Select Granular and Granular Materials

3.1 Discussion

Tests were done to analyze select granular and granular materials using a DCP. The testing was preformed by Mn/DOT and first analyzed for the Davich *et al.*, 2006 report. Three different granular material samples were tested. The three samples consisted of sample DN with a low amount of percent fines, sample FHJ with a high amount of percent fines, and sample KLO with an intermediate amount of percent fines. The descriptions and preparation of the test samples is explained in Chapter 2.

A standard Mn/DOT DCP (ASTM D 6951–03) was used to measure the penetration rate and estimate the shear strength of the granular material. The DCP used had a 20 mm diameter replaceable cone tip, a 575 mm drop height, and an 8 kg falling mass. The DCP measurements consisted of two seating drops, followed by five measured drops. The top few inches of tested material was not as uniform, confined or as compacted as the material further down, so the data from the seating drops was recorded separately from the deeper measurement drops. The DCP penetration index (DPI) is the depth that the DCP travels per drop (Mn/DOT standard is currently three measurement drops for aggregate base and five measurement drops for select granular and granular materials). An example of the depth versus the DPI per each drop is displayed in Figure 3.1 (more results can be viewed in Appendix G). This figure shows that the first few drops have greater penetration due to the unconfined material close to the surface.

Figure 3.1. Sample DPI versus depth plot

DCP data from the select granular and granular material was analyzed in order to compare how estimates of the materials' modulus were affected by the number of seating drops and the equation used to calculate the DPI. The modulus was first calculated using the Mn/DOT's standard of first performing two seating drops and then calculating the DPI using the readings from the next five drops. In the second method, the modulus was calculated with the weighted average of the five drops, which followed the two seating drops. These two methods were found to produce similar results because of the small variation in the penetration per drop. Therefore, when estimating the average modulus it is not necessary to weight the average using the depth of penetration per drop.

The modulus was also calculated by averaging the five drops that followed three seating drops. This was compared to the modulus results using only two seating drops. The comparison resulted in a significant increase of modulus values. This increase in modulus is visible in the select granular and granular material due to their lack of compaction and confinement near the surface. Therefore, it is advisable to use three seating drops with granular material, as is done during the LWD procedure. A comparison of these modulus estimates with respect to the standard averaging of the five drops after seating is shown in Figure 3.2.

Figure 3.2. Effects of seating drops and weighting on the DPI

The DPI measurements can be used to estimate the modulus of a soil. However, it is more common that only the DPI values are calculated. Figures 3.3-3.5 display the effects of the percent of optimum moisture content and relative compaction on the average DPI values for the tested samples.

Figure 3.3. Effects of percent of optimum moisture content and relative compaction on average DPI for select granular sample DN

Figure 3.4. Effects of percent of optimum moisture content and relative compaction on average DPI for granular sample FHJ

Figure 3.5. Effects of percent of optimum moisture content and relative compaction on average DPI for select granular sample KLO

The moduli were estimated using the DPI_1 value obtained from Equation 1.6. Figures 3.6-3.8 are plots comparing the modulus, percent of optimum moisture content, and the relative compaction of select granular and granular material.

Figure 3.6. Effects of percent of optimum moisture content and relative compaction on DCP modulus for select granular sample DN

Figure 3.7. Effects of percent of optimum moisture content and relative compaction on DCP modulus for granular sample FHJ

Figure 3.8. Effects of percent of optimum moisture content and relative compaction on DCP modulus for select granular sample KLO

As presented in Figures 3.3-3.5, the material weakens as the percent of optimum moisture content increases and therefore, both the penetration and DPI increase. Similarly, Figures 3.6-3.8 show that as the percent of optimum moisture content increases, the material weakens and the modulus decreases. In all three granular samples there is a sudden drop in strength and moduli around ninety percent of the optimum moisture content. This is more noticeable in the FHJ sample (Figure 3.7) than it is in the DN sample (Figure 3.6) or the KLO sample (Figure 3.8). The relationship between the moduli and the relative compaction is not as clear due to the limited range of density tested (99% to 111% of standard Proctor density, Table 2.2). The moduli show a slight increase as the relative compaction increases on the FHJ sample (Figure 3.8).

3.2 Conclusion

Figure 3.2 shows that the recommended number of DCP seating drops should be increased from two to three for granular and select granular materials. This should be considered for all DCP testing and would also be consistent with the three seating drops required during LWD testing. Due to the narrow range of density acceptable during road construction, the moisture content has a more significant influence on the DCP penetration rate. Therefore moisture content must be included in quality assurance procedures. Consequently, DPI target values are determined for moisture content ranges for a material defined by its grading number as described in Chapter 7.

Chapter 4 - LWD for Select Granular and Granular Materials

4.1 Discussion

The LWD was used to test the same select granular and granular samples (DN, FHJ, and KLO) tested using the DCP as described in Chapter 3. Details on the sample classifications and the preparation prior to testing are found in Chapter 2.

The LWD used for this analysis was the Dynatest/Keros model, which included the Mn/DOT standard 10 kg falling mass and 20 cm diameter base. The testing was done at the following drop heights: 25, 50, and 75 cm. The results and analysis of the affect of drop height on the modulus can be found in Appendix D. For the analysis in this chapter, only the data collected from the Mn/DOT standard drop height of 50 cm was used. The LWD modulus shown is the average of three consecutive drops from the 50 cm drop height. The modulus results from the material were plotted against the percent of optimum moisture content and relative compaction, as shown in Figures 4.1-4.3.

Figure 4.1. Effects of percent of optimum moisture content and relative compaction on LWD modulus for select granular sample DN

Figure 4.2. Effects of percent of optimum moisture content and relative compaction on LWD modulus for granular sample FHJ

Figure 4.3. Effects of percent of optimum moisture content and relative compaction on LWD modulus for select granular sample KLO

Figures 4.1-4.3 illustrate that the moduli of the select granular and granular materials are influenced by the percent of optimum moisture and relative compaction. The percent of optimum moisture has a strong influence on the modulus and the modulus increases as the percent of optimum moisture decreases. The relative compaction also influences the modulus of the granular material, but to a much lesser degree for the narrow range of densities acceptable during road construction.

4.2 Conclusion

The moisture content and gradation have a significant influence on the LWD measured moduli. Therefore, LWD target values can be estimated for select granular and granular materials using the same method applied to the DCP (grading number and moisture content). It is also recommended that three seating drops be used during LWD testing prior to the three measurement drops.

Chapter 5 – DCP for Fine Grained Soils

5.1 Discussion

The following is a further analysis of DCP measurements originally preformed on fine grained soils by Swenson *et al.*, 2006. In order to get a range of fine grained soils, four samples were collected from across the state of Minnesota. These locations were MnROAD (loam), Duluth (clay), Red Wing (silt), and Red Lake Falls (silty clay). Please see Chapter 2 for more information about the description and preparation of these soil samples.

A Mn/DOT standard DCP (ASTM D 6951-03) was used to collect the data for this study. The DCP used had a 20 mm diameter replaceable cone tip, a 575 mm drop height, and an 8 kg falling mass. As part of the DCP procedure, two seating drops followed by five measurement drops were taken. Since the soil is less confined near the surface, the DCP was able to penetrate further per drop, making the first two drops unreliable. Figure 5.1, a diagram of the DCP penetration index (DPI) versus depth, shows how the first drops do not accurately represent the average DPI. For this reason, the first two drops, known as the seating drops, are disregarded. Six DCP tests are shown in Figure 5.1. The red, green, and blue represent results for moisture contents of 71.5, 75.4, and 102.3 percent of standard Proctor optimum, respectively. Two DCP tests were performed in the specimens constructed at these moisture contents. Additional graphs showing the effect of depth on DPI are presented in Appendix G.

Figure 5.1. Sample DPI versus depth plot
The DPI results for fine grained soil are shown in Figures 5.2-5.5 in comparison to the percent of optimum moisture content and the relative compaction.

Figure 5.2. Effects of percent of optimum moisture content and relative compaction on average DPI for fine grained sample MnROAD

Figure 5.3. Effects of percent of optimum moisture content and relative compaction on average DPI for fine grained sample Duluth

Figure 5.4. Effects of percent of optimum moisture content and relative compaction on average DPI for fine grained sample Red Wing

Figure 5.5. Effects of percent of optimum moisture content and relative compaction on average DPI for fine grained sample Red Lake Falls

Using the process described in Chapter 1, the DCP modulus is estimated using the DPI. The DCP modulus of the soil in each of the tests was calculated and compared to the percent of optimum moisture content and the relative compaction. These comparisons are shown in Figures 5.6-5.9.

Figure 5.6. Effects of percent of optimum moisture content and relative compaction on DCP modulus for fine grained sample MnROAD

Figure 5.7. Effects of percent of optimum moisture content and relative compaction on DCP modulus for fine grained sample Duluth

Figure 5.8. Effects of percent of optimum moisture content and relative compaction on DCP modulus for fine grained sample Red Wing

Figure 5.9. Effects of percent of optimum moisture content and relative compaction on DCP modulus for fine grained sample Red Lake Falls

As presented in Figures 5.2-5.5, there is a wide range of average DPI values varying from 5 to 70 mm/drop. As expected, as the percent of optimum moisture content increases, the DPI increases as well. Figures 5.6-5.9 illustrate that as the percent of optimum moisture decreases from 85 to 50 percent, the modulus increases from 25 to 230 MPa. This can be explained by unsaturated soil mechanics theory (Gupta *et al.*, 2007). As the soil dries, suction increases resulting in an increase in strength and stiffness. It is difficult to observe a strong relationship between the modulus and the relative compaction due to the narrow density range studied.

5.2 Conclusion

The moisture content and the soil type have a significant influence on the DCP penetration rate. Density is less important for the narrow range acceptable during road construction. Therefore, target DPI values can be estimated using the in situ moisture content and a mechanistic-based description of soil type. Please see Appendix E for a description of how the plastic limit can be used to classify fine grained soil and estimate optimum moisture.

Chapter 6 – LWD for Fine Grained Soils

6.1 Discussion

The following is a further analysis of the LWD testing of fine grained soils by Swenson *et al.*, 2006. Four soil samples from across Minnesota were used to represent a range of fine grained soils. These locations were MnROAD (loam), Duluth (clay), Red Wing (silt), and Red Lake Falls (silty clay). Please see Chapter 2 for more detailed information on the fine grained soil description and preparation.

A Prima 100 LWD was used for this study. It had a mass of 10 kg and a plate diameter of 20 cm. For each specimen, five drops were performed at three different drop heights: 10, 50, and 90 cm (two seating drops, followed by three measurement drops). In this analysis, the modulus for each of the specimens was calculated using values from a drop height of 50 cm, as recommended by Beyer *et al.*, 2007. An exception to this drop height was made for the MnROAD samples because only drop height data from 90 cm was collected. For an in-depth analysis of the effects of drop height on modulus, please see Appendix D. The LWD testing procedure explained in Chapter 1 was used to estimate the modulus of the soil specimens. For each specimen, the modulus is compared to the percent of optimum moisture content and the relative compaction. These comparisons are represented in Figures 6.1-6.4.

Figure 6.1. Effects of percent of optimum moisture content and relative compaction on LWD modulus for fine grained sample MnROAD

Figure 6.2. Effects of percent of optimum moisture content and relative compaction on LWD modulus for fine grained sample Duluth

Figure 6.3. Effects of percent of optimum moisture content and relative compaction on LWD modulus for fine grained sample Red Wing

Figure 6.4. Effects of percent of optimum moisture content and relative compaction on LWD modulus for fine grained sample Red Lake Falls

6.2 Conclusion

By examining Figures 6.1-6.4, it can be seen that all of the specimens have highly varied modulus values. In general, as the percent of optimum moisture decreases, the modulus of the soil increases. However, it should be noted that both the MnROAD and Duluth samples vary from this general trend slightly in some regions of Figures 6.1 and 6.2, respectively. The relative compaction has a lesser affect than moisture content due to the narrow range of density acceptable during road construction. Therefore, the target LWD values can be estimated using the in situ moisture content and a mechanistic-based description of soil type. Please see Appendix E for a description of how the plastic limit can be used to classify fine grained soil and estimate optimum moisture.

Chapter 7 – Target Values and Conclusion

The Minnesota Department of Transportation (Mn/DOT) is currently improving the quality assurance testing of unbound materials during pavement construction by implementing the DCP and LWD. Standard testing procedures and model specifications for quality assurance are being developed in order to increase the accuracy, efficiency, and safety during construction testing.

7.1 Background

In this report the unbound materials used during pavement construction are divided into two general groups: granular and fine grained. Granular material is identified as soil having up to 20 percent fines whereas fine grained soil is identified as having more than 20 percent fines. Note that the four different fine grained soils used in this report had fine percentages from about 50 to more than 90 percent. This means that soils with fines in the range of 20 to 50 percent have not been used in the preparation of this report. The DCP and LWD testing was performed on each group separately, ensuring coverage of a wide range of unbound materials. Fortunately, the granular and fine grained groups tested tend to bracket the DPI and LWD target values for materials with fines contents between 20 to 50 percent. The DCP penetration index (DPI) is commonly used because it is a direct measurement of how far the DCP penetrates per drop. Similarly, the LWD directly measures the deflection of a plate due to the impact of a falling mass. Therefore target values for the DCP and the LWD are based on the DPI and the deflection respectively.

7.2 Granular Target Values

The grading number and moisture content are used to select the appropriate target value for compacted granular material. A sieve analysis is used to determine the grading number and an oven dry test or reagent test is typically performed to determine the moisture content. The grading number is the sum of the percentages of particles passing each sieve, as described in Appendix J.

Figure 7.1. DCP and LWD modulus comparison

Table 7.1 provides DPI and LWD target values according to a material's grading number and moisture content derived from Figure 7.1. The moduli for the Dynatest/Keros LWD were calculated using Equation 1.8 using a Poisson's ratio of 0.35 and a plate rigidity of 0.79 (Davich *et. al.*, 2006), whereas the Zorn LWD has these two constants set by the manufacturer (Poisson's ratio of 0.5 and a plate rigidity of 1.0). This difference between the two LWDs has a direct affect on the calculated moduli. Because all of the granular material testing contributed to this report used the Dynatest/Keros model, modulus values for the Zorn were estimated using a conversion factor of 0.67. For comparison, the Mr LSU moduli shown are estimated from the DPI using a relationship based on an extensive laboratory and field testing program of subgrade soils (Mohammad *et. al.*, 2007).

In order to avoid the extra modulus calculations and associated assumptions, a better option is to just compare the deflection measured by the Zorn LWD to a deflection target value. A requirement for this approach is that the impact force must be specified within a relatively tight tolerance because the deflection target values are dependent on the force applied. Please see Appendix D for a discussion on the influence of drop height (force) on deflection. Please note that Mn/DOT is currently implementing a quality assurance system based on deflection target values rather than modulus targets.

Grading Number	Moisture Content	Target DPI	Target DPI Modulus CSIR	Target LWD Modulus Dynatest	Target LWD Modulus Zorn	Target LWD Deflection Zorn
GN	%	mm/drop	MPa	MPa	MPa	mm
3.1-3.5	5 - 7	10	97	120	80	0.38
	7 - 9	12	80	100	67	0.45
	9 - 11	16	59	75	50	0.60
3.6-4.0	5 - 7	10	97	120	80	0.38
	7 - 9	15	63	80	53	0.56
	9 - 11	19	49	63	42	0.71
4.1-4.5	5 - 7	13	73	92	62	0.49
	7 - 9	17	55	71	47	0.64
	9 - 11	21	44	57	38	0.79
4.6-5.0	5 - 7	15	63	80	53	0.56
	7 - 9	19	49	63	42	0.71
	9 - 11	23	40	52	35	0.86
5.1-5.5	5 - 7	17	55	71	47	0.64
	7 - 9	21	44	57	38	0.79
	9 - 11	25	37	48	32	0.94
5.6-6.0	5 - 7	19	49	63	42	0.71
	7 - 9	24	38	50	33	0.90
	9 - 11	28	32	43	29	1.05

Table 7.1. DCP and LWD target values for granular materials

• Please see Appendix J for current DCP specification target values

* Keros/Dynatest LWD target values assume v = 0.35, and R = 0.79

† Target LWD modulus values assume falling mass = 10 kg, plate diameter = 20 cm, and drop height = 50 cm

 \ddagger Zorn LWD target deflection values assume v = 0.5, R = 1, and peak force = 6.28 kN resulting in a peak stress of 0.2 MPa

7.3 Fine Grained Target Values

The plastic limit and moisture content are used to determine DCP and LWD target values when evaluating the compacted condition of fine grained soil during embankment construction. In this case, the plastic limit is used in place of the grading number to classify the soil. For fine grained soils, a sieve analysis and a hydrometer test are time consuming. The plastic limit, on the other hand, is relatively simple and has a successful history of use (Black, 1962, Kersten, 1944, Swanberg and Hansen, 1946, and Woods and Litehiser, 1938). The plastic limit test determines when a soil changes from a plastic to a solid-like consistency and is defined as the moisture content at which the soil begins to crumble when it is rolled into a three millimeter thread. The moisture content is determined by an oven dry test or an alternative test.

For this report, a standard Proctor test was used to determine the optimum moisture content. Appendix E demonstrates that using the plastic limit to estimate the optimum moisture content is also feasible. Table 7.2 demonstrates this concept and provides DCP and LWD target values according to the soil's plastic limit and moisture content. For example, a soil with a plastic limit of 20 to 24 percent has an estimated optimum moisture content of 15 to 19 percent. When the field moisture content is 75 to 79 percent of optimum moisture content, the target DPI is 21 mm/drop and a target Zorn LWD maximum deflection is 1.6 mm.

Plastic	Estimated	Field Moisture	DCP Target	Zorn Deflection	Zorn Deflection			
Limit	Optimum	as a Percent	DPI at Field	Target at	Target at			
	Moisture	of Optimum	Moisture	Field Moisture	Field Moisture			
		Moisture		minimum	maximum			
[%]	[%]	[%]	[mm/drop]	[mm]	[mm]			
		70-74	12	0.5	1.1			
		75-79	14	0.6	1.2			
non-plastic	10-14	80-84	16	0.7	1.3			
		85-89	18	0.8	1.4			
		90-94	22	1.0	1.6			
		70-74	12	0.5	1.1			
		75-79	14	0.6	1.2			
15-19	10-14	80-84	16	0.7	1.3			
		85-89	18	0.8	1.4			
		90-94	22	1.0	1.6			
		70-74	18	0.8	1.4			
		75-79	21	0.9	1.6			
20-24	15-19	80-84	24	1.0	1.7			
		85-89	28	1.2	1.9			
		90-94	32	1.4	2.1			
		70-74	24	1.0	1.7			
		75-79	28	1.2	1.9			
25-29	20-24	80-84	32	1.4	2.1			
		85-89	36	1.6	2.3			
		90-94	42	1.8	2.6			
		70-74	30	1.3	2.0			
		75-79	34	1.5	2.2			
30-34	25-29	80-84	38	1.7	2.4			
		85-89	44	1.9	2.7			
		90-94	50	2.2	3.0			

Table 7.2. Target DPI and LWD deflection values for fine grained soils

The soils tested by Swenson *et al.*, 2006 were used to define the surfaces in Figure 7.2 and 7.3 for fine grained soils. Recall that four different soils from different locations around the state were used: MnROAD, Duluth, Red Wing, and Red Lake Falls. The plastic limit was plotted against the percent of optimum moisture content to produce figures of DPI and modulus values. This method was used to create Figures 7.2 and 7.3, which show the target DPI as well as the target LWD modulus for the Prima 100 model LWD used by Swenson.

Figure 7.2. Effects of percent of optimum moisture content and relative compaction on average DPI target values for fine grained soils

Figure 7.3. Effects of percent of optimum moisture content and relative compaction on LWD modulus values for fine grained soils

Figures 7.2 and 7.3 can be incrementally split into sections defined by the plastic limit ranges and percent of optimum moisture content shown in Table 7.2. Note that the LWD testing of fine grained soils documented in this report was performed with a Prima 100 model LWD. That

LWD model had a 20 cm plate diameter, 10 kg falling mass, and a 50 cm drop height, but also had significant design differences that have been described earlier. Additional field testing has been completed and more field testing is underway to refine the relationship between that previously used LWD and the current LWD model used in Minnesota. Please see Appendix L for a construction site analysis of how these proposed target values compare to field measured values.

The target values is Table 7.2 may be generally adequate, however those target values may not accurately represent every soil type and moisture content within the particular plastic limit and percent of optimum moisture content range described in Table 7.2. In order to select a more appropriate target value, a contour map was created. Instead of rigid increments, the contour map displays contour lines to achieve an accuracy of about 2 mm/drop. Figure 7.4 shows the average DPI contours versus plastic limit and percent of optimum moisture content for fine grained soils.

Figure 7.4. Average DPI versus percent of optimum moisture content and plastic limit for fine grained soils

As can be seen, the contours of Figure 7.4 are somewhat irregular. This is due to the fact that there is insufficient data in some regions of the plot. Using Figure 7.4 as a guide, Figure 7.5 was created to ease implementation and prevent the misinterpretation of the target values. Additional field verification testing will be required to validate and/or modify the target values determined using Figure 7.5.

Figure 7.5. Average DPI simplified target values versus percent of optimum moisture content and plastic limit for fine grained soils

Figure 7.5 is an efficient and relatively simple method of for estimating DPI target values on construction sites. To determine the DPI target value two variables need to be determined: the plastic limit (from which the optimum moisture content is estimated) and the field moisture content (which must be compared to the estimated optimum moisture content).

In order to estimate the target values for the Prima 100 LWD modulus, a contour version of Figure 7.3 was made. Figure 7.6 is a plot of the LWD modulus values versus the plastic limit and the percent of optimum moisture content. Note the target values shown in Figure 7.6 are for the Prima 100 LWD model. An appropriate conversion factor will be needed when testing with a different type of LWD.

Figure 7.6. LWD modulus versus percent of optimum moisture content and plastic limit for fine grained soils

As can be seen in Figure 7.6, the contours of LWD moduli are highly irregular. For this reason, another figure of LWD moduli values was created. Figure 7.7 shows moduli values estimated from the DPI values in Figure 7.4 using Equation 1.6. This was done in order to determine if the trends of the two figures generally agree. Note that values in Figure 7.7 should not be used as LWD modulus target values directly because they are derived from DCP data, not LWD data.

Figure 7.7. DCP modulus calculated from DPI versus percent of optimum moisture content and plastic limit for fine grained soils

The contours of Figure 7.7 show trends similar to Figure 7.6, however the magnitude of the actual modulus values in these figures do not agree. This is due to the fact that Figure 7.7 used test data from a DCP while Figure 7.6 used test data from the Prima LWD. In summary, the general trends of Figure 7.7 validate those of Figure 7.6, which was the intent of this analysis.

Similar to the DCP analysis, simplified target values were drawn for both the moduli estimated with the DCP and Prima LWD. Like the actual data contours of Figures 7.6 and 7.7, it is expected that while actual modulus values between the devices will be different, the general trends will be similar. Figure 7.8 shows the simplified DCP modulus values calculated from the simplified DPI target values from Figure 7.5 using Equation 1.4. Figure 7.9 shows the simplified LWD modulus target values derived from the contour lines of Figure 7.6.

Figure 7.8. DCP modulus calculated from simplified DPI versus percent of optimum moisture content and plastic limit for fine grained soils

Figure 7.9. Prima modulus simplified target values versus percent of optimum moisture content and plastic limit for fine grained soils

As can be seen from Figures 7.8 and 7.9, the general trend of the modulus values is similar for both devices even though the magnitude of the actual values varies greatly. This shows that while each device produces unique values, there is a reasonable correlation between them.

7.4 Conclusion

The final products resulting from this research implementation project are the target values for both granular materials and fine grained soils shown in Tables 7.1 and 7.2. These target values can be used for quality assurance of unbound materials during pavement foundation construction with minimal verification at specific project locations.

In addition to these target values, further standardization of the testing procedures for both LWDs and DCPs is important. This will ensure greater uniformity by personnel conducting these tests. Currently, the method for obtaining a DPI value is varied, involving different numbers of seating drops and measurement drops. Using three seating drops and five to ten measurement drops, depending on the material type, is recommended in this report.

LWD testing includes variations as well and the Mn/DOT Grading and Base section is currently defining the seating depth and other aspects of the procedure for implementation during the 2009 construction season. The LWD device is currently non-standardized nationally, allowing manufacturers to develop different models, which produce different measurements. Because Mn/DOT has decided to establish predetermined target values it is necessary to select a specific LWD such that the buffer and plate stiffnesses are also constant along with the specified falling mass, peak force, and plate diameter.

This project leveraged previous research sponsored by Mn/DOT and the LRRB. One primary resource was report 2006-20, *Validation of DCP and LWD Moisture Specifications for Granular Materials*, which validated the use of DCP and LWD technology. Two other studies also drawn upon extensively to better understand the effect of soil moisture on stiffness and strength were reports: 2006-26, *Moisture Effects on PVD and DCP Measurements* and 2007-11, *Pavement Design Using Unsaturated Soil Technology*.

In conclusion, LWDs and DCPs should be implemented more widely in the state of Minnesota. This should be done using the standardized testing procedures and the defined target values in this report as reasonable starting points from which project specific verification or modification would occur. The recommended target values in this report are intended to be estimates that need to be verified as appropriate for specific projects.

The draft specification produced by this project will be further refined and incorporated into Mn/DOT's *Standard Specifications, Grading and Base Manual, and Geotech and Pavement Manual*, as well as the inspector and technician certification classes already required for DCP and LWD use. As the benefits of these technologies become increasingly apparent, more counties, cities, and consultants are expected to acquire these tools.

References

- ASTM (2006) Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600kN-m/m³)), ASTM D 698-00a, American Society for Testing and Materials, West Conshohocken, PA, USA.
- ASTM (2006) Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM D 4318-05, American Society for Testing and Materials, West Conshohocken, PA, USA.
- ASTM (2007) Standard Test Method for Measuring Deflections with a Light Weight Deflectometer, ASTM E 2583-07, American Society for Testing and Materials, West Conshohocken, PA, USA.
- ASTM (2005) Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications, ASTM D 6951-03, American Society for Testing and Materials, West Conshohocken, PA, USA.
- Beyer, M., F. Camargo, P. Davich, and C. O'Neal (2007) *Light Weight Deflectometer (LWD) User's Guide*, Office of Materials, Minnesota Department of Transportation, Maplewood, MN, USA (Internal Draft Report).
- Black, W.P.M. (1962) A Method of Estimating the California Bearing Ratio of Cohesive Soils from Plasticity Data, Geotechnique, December, 1962.
- Camargo, F., B. Larsen, R. Roberson, and J. Siekmeier (2006) "Intelligent Compaction: A Minnesota Case History," Proceedings, 54th Annual University of Minnesota Geotechnical Conference, February 17, 2006, Saint Paul, MN, USA.
- Das, B.M. (2005) *Fundamentals of Geotechnical Engineering, Second Edition*, Thomson Canada Limited, Toronto, Ontario, Canada.
- Davich, P., F. Camargo, B. Larsen, R. Roberson, and J. Siekmeier (2006) Validation of DCP and LWD Moisture Specifications for Granular Materials, Report No. 2006-20, Minnesota Department of Transportation, Saint Paul, MN, USA.
- Fleming, P.R., M.W. Frost, and J.P. Lambert (2007) Review of Lightweight Deflectometer for Routine In Situ Assessment of Pavement Material Stiffness, Transportation Research Record No. 2004, Transportation Research Board, Washington, D.C., USA.
- George, K.P. (2006) *Portable FWD (PRIMA 100) for In Situ Subgrade Evaluation*, Report No. MS-DOT-RD-06-179, Mississippi Department of Transportation, Jackson, MS, USA.
- Grading and Base Unit (2002) *Grading and Base Manual*, Office of Materials, Minnesota Department of Transportation, Maplewood, MN, USA.

- Gupta, S., A. Ranaivoson, T. Edil, C. Benson, A. Sawangsuriya (2007) Pavement Design Using Unsaturated Soil Technology, Report No. 2007-11, Minnesota Department of Transportation, Saint Paul, MN, USA.
- Hoffmann, O., B. Guzina, and A. Drescher (2003) Enhancements and Verification Tests for Portable Deflectometers, Report No. 2003-10, Minnesota Department of Transportation, Saint Paul, MN, USA.
- Kersten, M. S. (1944) Progress Report of Special Project on Structural Design of Nonrigid Pavements, Proceedings, Twenty-Fourth Annual Meeting, Highway Research Board, Washington, D.C., USA.
- Lockwood, D., V.M.P. de Franca, B. Ringwood, and M. deBeer (1992) *Analysis and Classification of DCP Survey Data*, Technology and Information Management Programme, CSIR Transportek, Pretoria, South Africa.
- Mohammad, L.N., K. Gaspard, A. Herath, and M. Nazzal (2007) *Comparative Evaluation of Subgrade Resilient Modulus from Non-destructive, In Situ, and Laboratory Methods,* Louisiana Transportation Research Center, Baton Rouge, LA, USA.
- Mooney, M.A. and P.K. Miller (2009) Analysis of Light Weight Deflectometer Test Based on In Situ Stress and Strain Response, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 2, American Society of Civil Engineers, Washington, D.C., USA.
- Mooney, M.A., C.S. Nocks, K.L. Selden, G.T. Bee, and C.T. Senseney (2009) *Improving Quality Assurance of MSE Wall and Bridge Approach Earthwork Compaction*, Report No. CDOT-2008-11, Colorado Department of Transportation, Denver, CO, USA.
- Newcomb, D.E. and B. Birgisson (1999) *Measuring In Situ Mechanical Properties of Pavement Subgrade Soils*, NCHRP Synthesis of Highway Practice Report 278, National Academy Press, Washington D.C., USA.
- Oman, M. (2004) Advancement of Grading & Base Material Testing, Office of Materials, Minnesota Department of Transportation, Maplewood, MN, USA.
- Soils Laboratory (January 1992 to December 1998) *Minnesota Soil Tests.xls*, Office of Materials, Minnesota Department of Transportation, Maplewood, MN, USA.
- Swanberg, J.H. and C.C. Hansen (1946) *Development of a Procedure for the Design of Flexible Bases*, Proceedings, Twenty-sixth Annual Meeting, Highway Research Board, Washington, D.C., USA.
- Swenson, J. N., B. Guzina, J. Labuz, and A. Drescher (2006) Moisture Effects on PVD and DCP Measurements, Report No. 2006-20, Minnesota Department of Transportation, Saint Paul, MN, USA.

- Vennapusa, P and D. White (2009) in press, *Comparison of Light Weight Deflectometer Measurements for Pavement Foundation Materials*, Geotechnical Testing Journal, American Society for Testing and Materials, West Conshohocken, PA, USA.
- White, D., M. Thompson, and P. Vennapusa (2007) Field Validation of Intelligent Compaction Monitoring Technology for Unbound Materials, Report No. 2007-10, Minnesota Department of Transportation, Saint Paul, MN, USA.
- White, D., P. Vennapusa, J. Zhang, and H. Gieselman (2009) in press, *Implementation of Intelligent Compaction Performance Based Specifications in Minnesota*, Report No. 2009-??, Minnesota Department of Transportation, Saint Paul, MN, USA.
- Woods, K.B. and R.R. Litchiser (1938) *Soil Mechanics Applied to Highway Engineering in Ohio*, Bulletin No. 99, Ohio State University, Columbus, OH, USA.

Appendix A – Analysis of LWD Energy Distribution

A.1 Discussion

Light weight deflectometer (LWD) devices are becoming established tools for estimating moduli during quality control and quality assurance procedures in the United States. These devices are appealing because they provide a relatively accurate estimation of a soil's modulus from a mechanically simple test. For a more detailed description of a LWD, see Chapter 1.

The physics of such a system are readily understood. The potential energy of the raised mass is converted into kinetic energy as it falls. As the mass strikes the plate's buffer, some of its energy is transferred to the soil, which deflects. However, because energy is stored in the buffer, only a fraction of the initial potential energy is transferred to the soil (Equation A.1). Figure A.1 contains a plot of the energy ratio (Equation A.2) versus deflection measured by the LWD's geophone in contact with the ground.

$$PE \to KE \to W_{BUFFER} + W_{SOIL}$$
 [A.1]

Energy Ratio =
$$\frac{W_{SOIL}}{PE}$$
 [A.2]

where:

PE	=	potential energy
KE	=	kinetic energy
W _{BUFFER}	=	work done by the buffer
W _{SOIL}	=	work done by the soil

Figure A.1. Energy ration versus deflection

The potential energy is:

$$PE = mgh$$
 [A.3]

where:

PE	=	potential energy [N·m]
m	=	mass [10 kg]
g	=	acceleration of gravity $[9.81 \text{ m/s}^2]$
h	=	drop height of falling mass [0.25, 0.50, or 0.75 m]

The energy transferred to the soil can be calculated from the work done by the soil, which is the integral of the force measured over the observed deflection range, shown in Figure A.2. This integral was estimated using the area under the curve for the force versus deflection plot for a particular drop. An example of this trapezoidal integration is included in Figure A.3 and is defined by Equation A.4. This method consists of approximating the region under the curve of a given function using many trapezoids and summing their respective areas.

$$W_{SOIL} = \int F \ dx = \sum \frac{(f_2 + f_1)}{2(x_2 - x_1)}$$
[A.4]

Figure A.2. Load versus deflection

Figure A.3. Trapezoidal integration (courtesy of Wolfram Mathworld)

The LWD system can be modeled as a mass falling on a spring, the buffer, resting on another spring, the soil layer. Because the stiffness of the soil layer is the desired quantity, the deflection and load on the lower spring, the soil layer, are needed. However, energy is stored in the upper spring, the buffer, as well. As can be seen in Figure A.1 a large portion of the system's energy is not transferred to the soil. Rather the buffer stores energy until it is used to rebound the mass up the guide rod or this energy is dissipated as heat within the buffer. The large rebound of the mass when the LWD is used on stiff materials demonstrates this conclusion.

A.2 Conclusion

A large percent of the LWD's energy can be stored in the buffers, resulting in a small percentage of the mass's original potential energy to be transferred to the soil. In order to determine the amount of energy that is delivered to the soil, the force must be measured during the field test or prior to the field test, during the calibration procedure performed by the manufacturer.

The precision of the LWD is affected by the relative stiffness of the material tested and the buffers. Other things that can affect the precision of the measurements, due to the limited sensitivity of the load cell and geophone or accelerometer, are low energy from low drop heights, small deflections from stiff materials, and low stiffness buffers. Another factor that affects the accuracy of the LWD calculated modulus is when measurements are taken with a non-load cell LWD testing less stiff materials after the assumed load has been determined on a near-rigid material. Issues, such as the extent at which buffer stiffness affects LWD measurements and how temperature influences the rubber buffers, need further evaluation in order to be more fully understood.

Appendix B – Analysis of LWD Load Estimation for Granular Material

B.1 Introduction

It is known that the amount of load transferred to a material by a falling mass varies in response to the stiffness of the underlying material. For example, the falling mass delivers a greater force to the foundation if the material provides a relatively small deflection. As a result, the fixed load estimates may or may not be accurate enough to estimate the modulus of the material tested, which are used by certain models of light weight deflectometer (LWD) devices. A load estimate can be established by placing the LWD device on a concrete slab while independently measuring the load. This type of rigid foundation test results in a very small deflection and the load estimate produced may be significantly larger than the load generated on soils. The objective of the testing reported in this appendix is to determine if there is a need to correct the modulus values from LWD devices that estimate load in this manner. This appendix deals with granular soil, while fine grained soil is the focus of Appendix C.

The LWD used in this study was a Dynatest/Keros model. The standard test sequence for the device included two seating drops followed by three measurement drops performed at each of the following three heights: 25, 50, and 75 cm. This study was conducted in parallel with Davich *et al.*, 2006, using the same granular materials, preparation, and instruments.

B.2 Results

The loads applied to the specimens varied from 3 to 9 kN depending on the drop height. This resulted in an applied stress of 0.095 - 0.286 MPa while using the 20 cm diameter plate. The deflection of the soil varied from 0.2 to 2.5 mm, with large deflection values usually associated with the high moisture content specimens. The load versus deflection data is plotted in Figure B.1.

Figure B.1. LWD peak deflection versus peak force

The trend lines in Figure B.1 make it clear that the measured peak force values slowly decreased as the peak deflection of the soil increased. This decrease was 7.8 percent from the beginning to the end of the test range for the 75 cm drop height, 7.2 percent for 50 cm, and 7.0 percent for 25 cm.

Some LWD devices do not utilize a load cell, but instead estimate a modulus from fixed load values measured at near zero deflection (on a concrete slab). These peak force values are most likely larger than the values measured on soil materials. Therefore, the LWD used in this study was placed on a concrete slab to determine its force measurements at "zero" deflection. The average values recorded during this test are included on Figure B.1 at all three drop heights in the "slab" series. It can be seen that these slab values are larger than the force values in the soil material range. On average, modulus values calculated using the slab force values would be 7.8 percent larger than the modulus values calculated from measured loads at the 75 cm drop height, 5.4 percent larger at 50 cm, and 4.0 percent larger at 25 cm.

Figure B.2 shows the difference between modulus values calculated from the measured forces and the values calculated from forces that were estimated from the deflections using the equations found in Figure B.1. Figure B.3 shows the difference between the deflection estimated modulus values and the slab force modulus values. LWD devices that make use of a load cell achieve results that are only slightly more accurate than the results that could be obtained using the above equations to estimate the force. LWD devices that estimate modulus from slab force values would overestimate the modulus by about 5-6 percent at a 50 cm drop height based on the results obtained during this study.

◆ 25 cm (Measured Load)	50 cm (Measured Load)	▲ 75 cm (Measured Load)
◊ 25 cm (Estimated Load)	□ 50 cm (Estimated Load)	△ 75 cm (Estimated Load)

Figure B.2. Modulus values from measured and estimated loads

Figure B.3. Modulus values from slab and estimated loads

B.3 Conclusion

The practice of using slab force values to calculate modulus results in an overestimation on the order of 4-8 percent. This overestimation may be significant depending on how the LWD is utilized during quality control and quality assurance. Therefore, four options for obtaining a peak load value exist:

- 1) Purchase an LWD that incorporates a load cell. This would solve the load estimation problem, but the improvement is relatively minor compared to the additional cost and complexity of the device.
- 2) Use one of the equations in Figure B.1, or a similar equation, to estimate the load from the deflection at a given drop height. Figure B.2 makes it clear that this level of accuracy seems acceptable for granular soil. However, it has yet to be verified that these equations are valid for different LWDs. Therefore, it would be best to reproduce these figures for each device. These types of figures could be produced by the manufacturer and accompany the LWD upon delivery. This method appears to present the best combination of accuracy, cost, and effort.
- 3) Measure or estimate the average dynamic force at the most common level of deflection experienced during unbound material testing rather than the zero-deflection value. For the data presented in this appendix, the majority of deflection values were near 0.5 mm. An average dynamic force measured at this level of deflection (for example, 5.7 kN at a 50 cm drop height) is a better estimate of the force experienced on those soils than the rigid force (5.9 kN at 50 cm). This method would be simpler than using an equation to determine the force and nearly as accurate.
- 4) Use a fixed peak force measured independently on a concrete slab. This modulus estimation is hardwired into some LWD devices so no additional effort is required. However, as demonstrated above, it results in a modulus overestimation of 4-8 percent.

An important conclusion is to standardize the LWD falling mass, drop height, plate size, plate rigidity, buffer stiffness, and test procedure so that moduli estimates are more consistent between different LWD models. The geophone versus accelerometer based deflection sensors remain as important variables that require standardization and greater understanding. To remain consistent, a mass of 10 kg, a drop height of 50 cm, and a rigid plate with a diameter of 20 cm are recommended. A recommended test sequence for granular material is three seating drops followed by three measurement drops.

Appendix C – Analysis of LWD Load Estimation for Fine Grained Soil

C.1 Introduction

The previous Appendix B discussed light weight deflectometer (LWD) load estimation for granular material and recommended that a similar analysis be completed for fine grained soil. This appendix investigates if there is a need to correct modulus values for LWD devices that estimate load when these devices are used on fine grained soil.

The LWD used in this study was the Prima 100 model manufactured by Carl Bro. The standard test sequence for the device included two seating drops followed by three measurement drops at each of the following drop heights: 10 cm, 50 cm, and 90 cm. The LWD data used in this appendix was collected by Swenson *et al.*, 2006.

C.2 Results

The loads applied to the specimens varied between 1.7 and 9.3 kN; depending on the drop height. These loads resulted in a applied stress range of 0.054 to 0.296 MPa for a plate diameter of 20 cm. The deflection of the soil varied from near 0 to 0.95 mm. The load versus deflection data is plotted in Figure C.1. Figure C.2 contains a plot of specimen moisture content versus peak deflection. For the select granular materials discussed in Appendix B, high deflection values were usually associated with the high moisture content specimens. Figure C.2 shows that a similar trend is not as clear for the fine grained specimens tested by Swenson *et al.*, 2006. This may be due to somewhat large variations in density not accounted for in Figure C.2.

Figure C.1. LWD peak deflection versus peak force

Figure C.2. Peak deflection versus specimen moisture content

The trend lines in Figure C.1 show the relationship between measured force and soil deflection for fine grained soils. Measured force values decreased roughly 7 percent from the beginning to the end of the test range for the 90 cm drop height, while a slight increase of 1.5 percent was seen for the 50 cm drop height. The 10 cm drop height had an increase in measured force values of roughly 56 percent from the beginning to the end of the test range. Clearly the data from the 10 cm height is irregular and should be investigated more thoroughly. The lack of precision at very small deflections may indicate that deflection data less than 0.1 mm should be disregarded (Davich *et al.*, 2006).

To calculate the near-zero deflection force modulus values, the LWD was used to record force measurements on a concrete slab. The average values recorded during that testing are included in Figure C.1 at all three drops heights in the "slab" series. The slab values from figure B.1 are used in figure C.1 because the Prima LWD was not used on a concrete slab by Swensen *et. al.*, 2006. On average, modulus values calculated using these slab force values would, on average, be 8.4 percent larger than measured force modulus values at the 90 cm drop height and 8.9 percent larger at 50 cm, and 22.8 percent larger at 10 cm.

Figure C.3 shows the difference between modulus values calculated from the measured forces and the values calculated from forces that were estimated from the deflections using the best fit equations found in Figure C.1. Figure C.4 shows the difference between the deflection estimated modulus values and the slab force modulus values. LWD devices that make use of a load cell achieve results that are only slightly more accurate that the results that could be obtained using the equations to estimate the force. LWD devices that utilize near-zero deflection force values

tend to overestimate modulus values based on the results of this study. For 50 cm drop height the modulus would be expected to be overestimated by about 9 percent.

Figure C.3. Modulus values from measured and estimated loads

Figure C.4. Modulus values from slab and estimated loads
C.3 Conclusion

The conclusions from Appendix B remain valid for the fine grained soils described in this appendix. The data from these fine grained soil tests indicates that the moduli estimated, using slab force values, are overestimated by about 9 percent for the 50 cm drop height. This compares to the 5-6 percent overestimation during the granular testing described in Appendix B.

Appendix D - Influence of LWD Drop Height on Force, Deflection and Modulus

D.1 Introduction

Tests performed for the LRRB sponsored Investigation 829 "Validation of DCP and LWD Moisture Specifications for Granular Materials" (Davich *et al.*, 2006) used a light weight deflectmeter (LWD) to record the deflection and load applied to three select granular and granular samples. Select granular material consists of fines less than 12 percent where granular material contains less than 20 percent fines. A LWD test was conducted at three different drop heights of 25, 50, and 75 cm to determine how the height difference affects measurements of the material. The LWD tests were used to measure the force generated by the falling mass of the LWD and the deflection of the granular sample. These measurements were then used to calculate the modulus of the granular material.

The tests were performed on three different granular samples created by blending two or three smaller granular samples. Sample DN consisted of select granular with the lowest fines content. The sample FHJ consisted of granular with the most fines. The third sample KLO consisted of select granular with a percent passing gradation between the test samples DN and FHJ. The properties of the select granular and granular samples can be seen in Table D.1 (Beyer *et al.*, 2007).

Sample	Mn/DOT Class	Grading Number	% Fines (%)	Density Standard Proctor Maximum (kg/m ³)	Moisture Standard Proctor Optimum
DN	Select Granular	5.1	7.6	1942.4	8.1
FHJ	Granular	6.1	16.0	1753.4	10.3
KLO	Select Granular	5.4	10.6	1874.2	8.8

Table D.1. Select granular and granular index properties

The select granular and granular sample groups were tested at three target moisture contents. The moisture contents were aimed to be near the optimal moisture content, as determined by the standard Proctor test. Within each of the moisture contents, the targeted compaction effort was applied using a large free falling impact hammer. The specimen densities were also measured.

The granular samples were labeled for testing by their sample group, moisture content and compaction effort. The first letters in the test name were the sample group. The numbers following the sample group indicate the moisture content. The numbers following a "X" in the name indicate the multiplication change in compaction effort. If there was no second number, then the compaction effort was targeted at 12,400 lbf-ft/ft³ (standard Proctor effort). For example, test DN10X2 is from the DN sample with a moisture content of 10 percent and compaction energy twice the standard Proctor effort (24,800 lbf-ft/ft³).

D.2 Procedure

As described in Davich *et al.*, 2006, the testing was done in the bottom half of a 55-gallon steel drum. The required amount of water to achieve the target moisture content was calculated and evenly sprinkled over the granular material prior to placing it in the drum in order to thoroughly and evenly distribute moisture throughout the sample. The granular material was added into the drum in three layers. Each layer was compacted with 93 drops by a 51-lb hammer. The granular material was then tested with the LWD to measure the force and deflection.

D.3 Discussion of Results

The data taken from Davich *et al.*, 2006 is analyzed here to compare how the measurements were affected by different drop heights. The data from the granular tests FHJ13 and test KLO11 were not included in this analysis due to their high moisture content resulting in particularly large deflection readings and small modulus readings. The DN10S test was also excluded from the data due to drum instability during testing. The mean and coefficient of variation were calculated using test results from a drop height of 50 cm.

$$Mean_{force} = \frac{\Sigma(measured \ value)}{number \ of \ samples}$$
[D.1]

$$CoeVar_{force} = \frac{stdev(measured values)}{mean of samples}$$
[D.2]

$$Median_{force} = middle \ value \ measured$$
 [D.3]

$$Mean \ CoeVar_{force} = \frac{\Sigma(CoeVar)}{number \ of \ samples}$$
[D.4]

D.3.1 Force

The measured force [kN] was compared to the drop height [cm] for each different granular test shown in Figures D.1-D.3. A best-fit trend line was used to represent the correlation between force and drop height for each soil specimen (Figure D.4).

Figure D.1. Force versus drop height for select granular sample DN

Figure D.2. Force versus drop height for granular sample FHJ

Figure D.3. Force versus drop height for select granular sample KLO

Figure D.4. Force versus drop height for all three granular samples

The mean and coefficient of variation for each test specimen is marked under the tests name in the legend. The median and coefficient of variation are based on the values from a drop height of 50 cm for all tests. The median force and coefficient of variation for the sample DN was 5.40 kN and 4.54 percent, respectively. Sample FHJ was found to have a median force of 5.63 kN and a coefficient of variation of 0.89 percent. A median force of 5.67 kN and a coefficient of variation of 0.87 percent was found for the sample KLO. All three of the different material samples combined had a median force and coefficient of variation of 5.60 kN and 2.13 percent, respectively. These results are summarized in Table D.2.

Table D.2. Wedian force and coefficient of variation results					
Sample	DN	FHJ	KLO	ALL	
Median Force [kN]	5.40	5.63	5.67	5.60	
Coefficient of Variation [%]	4.54	0.89	0.87	2.13	

Table D.2. Median force and coefficient of variation results

All three of the different samples are graphed in the same graph (Figure D.4). The three different granular types had a similar increase of force for increasing drop height. The average force increase for the three granular types was found to be about 0.092 kN/cm increase in height drop. The percent change of the force was calculated to be 1.6 percent per centimeter based on the median force measured of 5.60 kN at 50 cm drop height.

Percent change =
$$\left(\frac{average \ slope}{median \ force_{50 \ cm}}\right)$$
 [D.5]

D.3.2 Deflection

The deflection [mm] was also compared to the drop height [cm] for each granular test in Figures D.5-D.8. A best-fit trend line was used to represent the correlation between deflection and drop height for each test specimen as shown in Figure D.9.

Figure D.5. Deflection versus drop height for select granular sample DN

The DN select granular samples that had a moisture content of 10 percent resulted in a negative defection relationship with the increase of the mass drop height. This higher moisture content is believed to have resulted in partial liquefaction of the samples as additional impacts were applied at increasing drop heights. The standard Procter optimum moisture content of the DN sample in Table D.1 is 8.1 percent. For this reason, the DN select granular sample with a moisture content of 10 percent was excluded from further analysis in this section, which describes deflection (Figure D.6). However, these high moisture DN samples were included in the previous discussion of force and the following discussion of modulus.

Figure D.6. Deflection versus drop height for select granular sample DN

Figure D.7. Deflection versus drop height for granular sample FHJ

Figure D.8. Deflection versus drop height for select granular sample KLO

Figure D.9. Deflection versus drop height for all three granular samples

For each test specimen, the mean deflection and coefficient of variation is located in the legend under the tests name. The median deflection and coefficient of variation was also measured from a drop height of 50 cm for each group sample. The median deflection for sample DN was found to be 0.80 mm with a coefficient of variation of 10.34 percent. The median deflection and coefficient of variation for sample FHJ was 0.50 mm and 8.85 percent, respectively. Sample KLO had a median deflection of 0.58 mm and a coefficient of variation of 7.86 percent. All three of the samples combined were found to have a median deflection of 0.54 mm and a coefficient of variation of 8.8 percent. These results are summarized in Table D.3.

Table D.5. Wedian deflection and coefficient of variation results					
Sample	DN	FHJ	KLO	ALL	
Median Deflection [mm]	0.80	0.50	0.58	0.54	
Coefficient of Variation [%]	10.34	8.85	7.86	8.80	

Table D.3. Median deflection and coefficient of variation results

The three different select granular and granular samples had a similar increase in deflection with increasing drop height when excluding the tests with high moisture contents. The average deflection increase for the three granular types was found to be about 0.0062 mm/cm. The percent change of the deflection was calculated to be 1.2 percent per centimeter based on the median deflection of 0.54 mm measured at a 50 cm drop height.

$$Percent \ change = \left(\frac{average \ slope}{median \ deflection_{50 \ cm}}\right)$$
[D.6]

D.3.3 Modulus

The modulus [MPa] was compared to drop height [cm] for each different granular test in Figures D.10-D.12. A best-fit trend line was used to represent the correlation between modulus and drop height for each soil specimen (Figure D.13).

Figure D.10. Modulus versus drop height for select granular sample DN

Figure D.11. Modulus versus drop height for granular sample FHJ

Figure D.12. Modulus versus drop height for select granular sample KLO

Figure D.13. Modulus versus drop height for all three granular samples

In the legend under the tested sample's name, the mean modulus and coefficient of variation are listed. The median modulus and coefficient of variation for the group samples are performed from a drop height of 50 cm. The median modulus and coefficient of variation for the group sample DN was found to be 16.27 MPa and 5.66 percent, respectively. A median modulus of 50.47 MPa and a coefficient of variation of 9.18 percent were found for sample FHJ. Sample KLO was found to have a median modulus of 42.95 MPa and a coefficient of variation of 7.56 percent. The three samples combined were found to have a median modulus of 42.65 MPa and coefficient of variation of 7.56 percent. These results are summarized in Table D.4.

Table D.4. Wedian modulus and coefficient of variation results					
Sample	DN	FHJ	KLO	ALL	
Median Modulus [MPa]	16.27	50.47	42.95	42.65	
Coefficient of Variation [%]	5.66	9.18	7.56	7.55	

Table D.4. Median modulus and coefficient of variation results

In Figure D.13, all three of the granular samples were graphed in the same plot area. The three granular types had a similar increase in the modulus for the increase in mass drop height. The average modulus increase for the three granular types was found to be about 0.212 MPa/cm increase in height drop. The percent change of the modulus difference was calculated to be 0.5 percent per centimeter change based on the median modulus measured at 50 cm drop height and a median modulus of 42.65 MPa.

Percent change =
$$\left(\frac{average \ slope}{median \ modulus_{50 \ cm}}\right)$$
 [D.7]

D.3.4 Example

In order to better understand the influence of the drop height, an example is presented in Table D.5. For a LWD manufactured with the Mn/DOT standard drop height of 50 cm, the expected value for the force is roughly 5.60 kN (buffer and material stiffness also should also be taken into consideration). In comparison, if the LWD had a drop height of 55 cm then the value of the force would have an expected difference of 0.46 kN. This force difference results in a percent change of 8.2 percent. The deflection for the same situation would have a difference of 0.03 mm, which equates to a percent change of about 5.7 percent. The modulus has a difference of 1.06 MPa for the same situation and a 2.5 percent change from the average 50 cm drop height.

	Force	Deflection	E
	[kN]	[mm]	[MPa]
Expected value at 50 cm drop	5.60	0.54	42.65
Slope [unit per cm increase in drop height]	0.0918	0.0062	0.2123
Calculated for a 55 cm drop height	6.06	0.57	43.72
Difference	0.46	0.03	1.06
% change	8.2%	5.7%	2.5%

Table D.5. Example of drop height influence

D.4 Conclusion and Recommendations

This analysis shows how the drop height affects the force, deflection, modulus and concludes that the effect is relatively small for small changes in drop height. Standardizing the plate size, falling mass, and the drop height also help control this variation. Drop height had the largest affect on the force. For each centimeter change in drop height the force varies by about 1.6 percent. The change in drop height had a small affect on the deflection of the granular material. The deflection increased by about 1.2 percent for each centimeter increase in drop height. It is important to note that there is a significant influence on the deflection due to water content in comparison to the drop height. If the water content is too high, deflections increase dramatically, as seen in the DN select granular samples. Small changes in the drop height had almost no affect on the modulus of the select granular samples. The modulus changed by about 0.5 percent for each centimeter increase in drop height. It is concluded that a small change in a manufactured drop height of 2-3 cm will not greatly affect the target values determined for 50 cm drop height. This conclusion assumes that the buffer configuration is the same for the LWD used to determine the target values and the LWD used during construction quality assurance.

Appendix E – Using the Plastic Limit to Estimate Optimum Moisture Content

E.1 Introduction

Currently the most common method for estimating the optimum moisture content for the compaction of a soil is to use the standard Proctor test, as defined by ASTM D 698 - 00a. By determining the dry unit weight of a soil for many different water contents, a compaction curve is found. On this curve, the water content that corresponds to the maximum dry unit weight is known as the optimum water content for that specified compaction energy and method of compaction.

Another option for determining the optimum moisture content is to use a plastic limit test. This test, which is standardized by ASTM D 4318 - 05, measures the soil's moisture content while it is in the transition from a semi-solid consistency to a plastic consistency. In order to perform this test, a small, dry sample of the desired soil has water added to it, so that an appropriate moisture is achieved. Once the water is fully worked into the soil, the mix is shaped into a thread. The plastic limit is the water content at which the thread crumbles at a diameter of 3 mm. As will be shown in this appendix, the plastic limit is related to the optimum moisture content estimated by a standard Proctor test.

Grain size is another property of soil that can be measured and used to determine its Mn/DOT Textural Classification. This process uses a triaxial chart to classify soils using their unique grain size makeup. The triaxial chart, Figure E.1, has three axes, which are broken down by the soil's percentage composition of clay, silt and sand. These properties are found by performing a grain-size analysis, as defined in Mn/DOT's Grading and Base Manual – 5-692.600.

Figure E.1. Triaxial chart for Mn/DOT textural classification of soils

At the Mn/DOT Office of Materials and Road Research, most soil samples are tested for many properties, including the standard Proctor test and the plastic limit. In addition, each soil is described by its Mn/DOT Textural Classification. This data is stored in a central database and used in the following analysis.

E.2 Comparison

There are two main goals during the comparison of the plastic limit test and the standard Proctor test for determining optimum moisture content. The first goal is the show that there is a reasonable qualitative relationship between the standard Proctor optimum moisture and the plastic limit. The second goal is to show that this relationship is accurate enough to implement under field conditions.

Since this proposed method is mainly for field use, it was decided that a linear relationship would be desirable if it can be shown that the data is well represented by a linear relationship. If this can be done, then inspectors would need only one simple equation to estimate the optimum moisture content for compaction from the plastic limit.

In order to determine this correlation, the plastic limit was plotted against the standard Proctor optimum moisture. All soil specimens tested by the Office of Materials and Road Research from January 1992 to December 1998 were plotted in Figure E.2. For clarification, each soil type was fitted with a linear tread line. This was done in order to get an initial feel for the data as well as to show some possible data problems.

Figure E.2. Plastic limit versus standard proctor optimum moisture for all available soil types

As can be seen from Figure E.2, there is a high degree of disparity between the slopes of each of the different soil types. In part, these problems are caused by inadequate data. By reviewing each soil's data, four soil types don't have sufficient data to represent a proper trend line. These four soils are: Loamy Sand (LSa), Sand (Sa), Sandy Clay Loam (SaCL), and Silty Clay (SiC). Each of these soils have fewer than ten data points, because these soil types are not very common

in Minnesota road construction or are non-plastic and therefore the plastic limit test is not preferred. Each of these four soils samples have a much different slope than that of the majority. For this reason, it was decided that the data for these four soils, (LSa, Sa, SaCL, and SiC), would not be included in this study. A modified version of the plot can be seen in Figure E.3. Figure E.3 also shows the equations of the trend lines, as they will be used to determine the relationship between the plastic limit and standard Proctor optimum moisture.

Figure E.3. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data

As can be seen in Figure E.3, the trend lines are more similar to one another once the nonrepresentative data is removed from the study. From these trend lines, an 'average' trend line can be made that will estimate the optimum moisture of the standard Proctor test using the plastic limit test. This is done by breaking each of the individual trend line equations into their slope and y-intercept. The average of each coefficient is taken and the end result is the 'average trend line.' In this study, the trend line is found to be:

$$Y_{AVE(1)} = 0.56X + 4.6$$
 [E.1]

where:

X = Plastic Limit [%] Y_{AVE} = Standard Proctor Optimum Moisture [%] A further simplification that may be accurate enough for the intended use is:

$$Y_{AVE(2)} = 0.5X + 5$$
 [E.2]

This relationship between the plastic limit and standard Proctor optimum moisture can provide fairly accurate results, but the larger the plastic limit is, the less accurate the standard Proctor optimum moisture estimate will become. Figure E.4 shows these approximations for the relationship and all of the soil points with adequate data.

Figure E.4. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data and approximations for the average trend line

Another option for determining a trend line that will best fit the data is to compile all of the points into one group and have Microsoft Excel plot a trend line through all data points. Just like before, finding the plastic limit and inputting it into the trend line equation would approximate the standard Proctor optimum moisture. Analysis will be performed on each of the equations to conclude which is more effective at determining the optimum moisture of the soil. Figure E.5 shows this statistical trend line from compiling all of the soil data into one group.

Figure E.5. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data and the statistical trend line

From Figure E.5, the adequate soils data points have a trend line with the equation:

$$Y_{STAT} = 0.76X + 0.16$$
 [E.3]

A third method for determining a trend line that will best fit the data is to approximate one by disregarding a few outliers. Upon reviewing a graphical representation of the data, one can estimate an appropriate linear trend line that will both fit the data and be easy to implement in the field. From all of the soils with sufficient data, an estimated trend line, Equation E.4, was found. A graphical representation of this trend line can be seen in Figure E.6.

$$Y_{EST} = X - 5 \tag{E.4}$$

Figure E.6. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data and the estimated trend line

As a summary and comparison, all of the trend lines (average, statistical, and estimated) as well as all data points with sufficient soil samples are plotted on Figure E.7. In addition, the range of the plastic limit shown on the table was reduced to between 15 to 30 percent because highway soil plastic limits are most commonly found between these boundaries.

Figure E.7. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data and the approximations to the average trend line, the statistical trend line, and the estimated trend line

E.3 Analysis

As is the case with any sort of estimation, it is important to demonstrate the accuracy of the results. In this case, the degree of accuracy for each estimate was found and compared. This way, an inspector is able to determine which estimate is better suited for the project, and more importantly, whether the result is accurate enough for its intended purpose.

In addition, the concept of using the plastic limit to determine the optimum moisture must be justified. This concept is different than the current practice, which uses the standard Proctor test and the percent sand, silt, and clay to classify the soil. The reason for this change is warranted for two reasons. The first is that this new process is quicker. The second is accuracy; if the data fits the trend line, then this new method is valid for use.

In order to determine how accurate these results are, each of the trend lines is assigned a reasonable range of values (± 2 percent with respect to the standard Proctor optimum moisture); the confidence intervals of these 'boundaries' on the data are computed and compared. This is done by determining the ratio of data points that fall within the set boundaries and the total

amount of data points. A visual representation of this analysis is shown in Figures E.8 through E.10.

Figure E.8. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data, average trend line, and accuracy boundaries

Figure E.9. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data, statistical trend line, and accuracy boundaries

Figure E.10. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data, estimated trend line, and accuracy boundaries

From this analysis, each of the confidence intervals is found. First, for the average trend line, there is a confidence interval of 46 percent. The statistical trend line has a confidence interval of 52 percent. Finally, the confidence interval for the estimated trend line is 55 percent. This shows that although all of the approximations are accurate, the estimated trend line is better suited for field use.

As a final check, it was decided to investigate whether the estimated trend line could be changed to yield better results. This was done using the Solver function in Microsoft's Excel, which allowed the slope and y-axis intercept to change until the confidence interval was maximized in Figure E.11. From this process, Equation E.5 was found to have the highest confidence interval (55.5 percent).

$$Y_{MOD-EST} = X - 5.2$$
 [E.5]

Figure E.11. Plastic limit versus standard proctor optimum moisture for all soil types with adequate data, modified-estimated trend line, and accuracy boundaries

E.4 Conclusion and Recommendation

Based on the previous discussion, it is concluded that the standard Proctor optimum moisture can be estimated by determining the plastic limit. It is recommended that the following relationship be used:

$$Y = X - 5$$
[E-6]

where:

X = Plastic Limit [%]Y = Standard Proctor Optimum Moisture [%]

By using this estimation, there is a confidence interval of 55 percent that the estimation will be within ± 2 percent, for this set of data, which is better than other methods considered. It was decided to use Equation E.4 rather than the more accurate Equation E.5 first because it is simpler to use and there is only a 0.5 percent difference in the confidence interval.

Recall that the standard Proctor "optimum" moisture is also only an estimate of the appropriate moisture content for field compaction. It has long been known that this "optimum" may be too wet for some soils and for some modern high-energy compactors, which may use a combination of kneading and vibration to compact soils. The standard Proctor test does not replicate the actual field compaction conditions.

F.1 Commentary

LWD devices consist of a mass that falls onto some type of buffer system that then transfers load to an instrumented plate that subsequently transfers load to the soil surface. The mass is held above using a guide rod that attaches to the top of the plate. This rod makes certain that the mass falls vertically and smoothly as well as providing a convenient method for standardizing the drop height.

In general, such a system should be reliable. However, a Mn/DOT report written by the University of Minnesota (Hoffman *et al.*, 2003) suggests that some guide rod systems can result in erroneous modulus estimates for some LWD devices that incorporate load cells. Hoffmann concluded that the socket connecting the rod to the plate jostles under the impact loading, thereby interfering with both the load and deflection measurements. Additionally, it was observed that the bolts connecting the guide rod socket to the load plate sometimes contacted the socket in such a manner to transfer a fraction of the energy from the falling mass to the bolt heads. When this happens, the frame of the LWD transfers this energy to the plate and soil, bypassing the load cell and therefore the actual load delivered to the soil is not accurately represented in the load data collected by the load cell.

To correct these situations, Hoffmann suggested removing the guide rod and striking the load cell and plate directly with a rubber mallet. The force pulse delivered in this modified system would not be as repeatable as the pulse produced by a mass falling from a standardized height. However, the force from the hammer would be transferred directly to the soil through the load cell, allowing for an accurate force to be measured. An initial analysis of this modified configuration found that the load pulse produced by the rubber mallet was much shorter in duration than the pulse produced by the falling mass. This is due to the absence of the LWD standard rubber buffers, which have been partially replaced in function by the rubber head of the mallet. The hammer method resulted in significantly lower deflection values than the falling weight method for similar peak force values. This result again validates the shortcomings of using only the peak load and deflection to estimate the modulus.

F.2 Research Needs

- 1) Load pulse peak and duration for different LWD buffer configurations.
- 2) Accuracy and precision of load cell.
- 3) Accuracy and precision of geophone

Appendix G – DPI versus Depth Charts for Dynamic Cone Penetrometer Tests

G.1 Introduction

Figures G.2-G.39 are a visual representation of the dynamic cone penetrometer (DCP) penetrating the granular material and fine grained soil samples. The y-axis is a measurement of the DCP's depth, while the x-axis is the depth that the DCP penetrated per drop, also known as the DCP penetration index (DPI). As can be seen from the figures, the first few drops are not uniform and differ greatly from the lower drops. The lower drops are relatively uniform and therefore they are the desired values for calculating the DPI. Thus, in the current procedure standardized by Mn/DOT, the first two drops, known as the seating drops, are disregarded. This appendix investigates whether the first three drops should be considered seating drops and concludes that three seating drops are recommended as shown in Chapter 3, Figure 3.2.

The first graphs, Figures G.2-G.11, are from the select granular and granular material. The labeling on each briefly describes the sample, target moisture content, location of testing within the barrel, and the actual moisture content. For example, "DN5_A_4.99" represents sample DN with a target moisture content of 5 percent, DCP test location A, and an actual moisture content of 4.99 percent. DCP testing locations A, B, and C are shown in Figure G.1. Figures G.12-G14 consolidate all of the granular and select granular tests into three graphs, one for each granular material type; DN, FHJ, and KLO, respectively.

Figure G.1. Barrel locations A, B, and C

The second set of graphs, Figure G.15-G.32, are for the fine grained soil. The labeling on each of the soil samples briefly describes the soil type, DCP test number, percent of optimum moisture content, and standard Proctor density. For example "A_1_102.3_97.7" represents MnROAD soil, DCP test number 1, 102.3 percent of optimum moisture content, and 97.7 percent of standard Proctor density. For the fine grained soil, letter A represents MnROAD soil, B represents Duluth, C is Red Wing, D is Red Lake Falls, E is Steele CSAH 35, and F is for Steele T-145. For each target percent of optimum moisture content and target standard Proctor density, there are two DCP tests. Figures G.33-G39 consolidate all of the fine grained soil tests into seven graphs, one for each fine grained soil type, with an except for soil E, which has two graphs.

Steele County, in southern Minnesota, provided DCP data to help further develop our analysis on fine grained soil DCP data. Data from Steele CSAH 35 is represented in this Appendix as soil

type E, which is classified as clay, sandy clay, and clay and silt. Data from Steele T-145 is represented as soil type F, which is classified as sandy clay.

G.2 Granular and Select Granular DPI Charts

Figure G.2. DN5 and DN05 select granular samples

Figure G.3. DN7 and DN07 select granular samples

Figure G.4. FHJ8 and FHJ8X2 granular samples

Figure G.6. FHJ10 granular sample

Figure G.8. KLO7 and KLO7X1.33 select granular samples

Figure G.10. KLO9 and KLO9X0.5 select granular samples

Figure G.11. KLO10 and KLO10X10.5 select granular samples

Figure G.12. All DN select granular samples

Figure G.13. All FHJ granular samples

Figure G.14. All KLO select granular samples

Figure G.15. MnROAD fine grained samples low target density

Figure G.16. MnROAD fine grained samples high target density

Figure G.17. Duluth fine grained samples low target density

Figure G.18. Duluth fine grained samples high target density

Figure G.19. Red Wing fine grained samples low target density

Figure G.20. Red Wing fine grained samples high target density

Figure G.21. Red Lake Falls fine grained samples low target density

Figure G.22. Red Lake Falls fine grained samples high target density

Figure G.23. Steele CSAH 35 fine grained samples low target density (90-94%)

Figure G.24. Steele CSAH 35 fine grained samples low target density (95-99%)

Figure G.25. Steele CSAH 35 fine grained samples high target density (100-101%)

Figure G.26. Steele CSAH 35 fine grained samples high target density (102%)

Figure G.27. Steele CSAH 35 fine grained samples high target density (103-104%)

Figure G.28. Steele CSAH 35 fine grained samples high target density (106%)

Figure G.29. Steele CSAH 35 fine grained samples high target density (106-108%)

Figure G.30. Steele CSAH 35 fine grained samples high target density (110-112%)

Figure G.31. Steele T-145 fine grained samples low target density

Figure G.32. Steele T-145 fine grained samples high target density

Figure G.33. All MnROAD fine grained samples

Figure G.34. All Duluth fine grained samples

Figure G.35. All Red Wing fine grained samples

Figure G.36. All Red Lake Falls fine grained samples

Figure G.37. Steele CSAH 35 fine grained samples low target density

Figure G.38. Steele CSAH 35 fine grained samples high target density

Figure G.39. All Steele T-145 fine grained samples

Appendix H – Select Granular and Granular Material Data

Sample ID	1	Gradati	on	9 S	Location		1	.WD			D	CP					Density			Moisture	Content
Sample	CGN	FGN	GN	Section	Trial #	Force	Stress [MPa]	Deflection	E IMPal	Reading	DPI imm/blowi	3 pt avg	E IMPal	Barrel Ikg/m31	S cone [kg/m3]	L cone [kg/m3]	Proctor [kg/m3]	Relative cone	Relative barrel	Oven-dry [%]	12/61
DN05	3.82	1.32	5.14	A	Initial	0 10 1020 1				170				CONTRACTOR		1				2.25	-
DN05	3.82	1.32	5.14	A	81	1				230	60		14.4								
DN05	3.82	1.32	5.14	A	<u>\$2</u>				-	261	31	272.0	29.1				-			4.07	
DNBS	382	1 32	5.14	A	1					282	10	37.3	44.0							4 80	
DM05	3.06	1.32	5.14	A	4					317	12	19.7	47.0	-						4.72	
DN85	3.82	1 32	5.14	A	4	1				332	15	167	62.9			14	0 0			4.70	
DN05	3.82	1.32	5.14	A	S					347	15	15.3	62.9	2			1				
DN05	3.82	1.32	5.14	A	6					360	13	14.3	73.3	1							
DN05	3.82	1.32	5.14	A	7	1				372	12	13.3	79.8	()		2	8				
DN05	3.82	1.32	5.14	A	8					383	11	12.0	87.5								
DN05	3.82	1.32	5.14	A	2			-		393	10	11.0	90.8								
DNUS	3.84	1 22	2.14	A	10				-	404	11	10.7	07.2	-							
DN05	3.82	1 32	5.14	-	12					425	10	10.7	96.8								
DN05	3.82	1.32	5.14	A	13					435.0	10	10.3	96.8								
DN05	3 82	1 32	5.14	A	Median A				1	1000	13		73 3								
DN05	3.82	1.32	5.14	A	W Mean A S1-end	1 J.	-		2		26.6		34.3	8			8 8				
DN85	3 82	1 32	5.14	A	W Mean A S2 end						16.8		55.8	1							_
DN05	3.62	1.32	5.14	A	W Mean A 1-end						14.3		00.3				-				_
DN85	3.82	1 32	514	4	Mean & 3.7				-		17.2		54.4			-					
DN85	3.82	1 32	514	Ä	Mean A 4-8	1			2		15.6	-	60.4	1		8	2				
DN05	3.82	1.32	5.14	A	Mean A 8-12						11.4		84.2	3			1				
DNBS	3.82	1.32	5.14	A	Mean A						13.4		75.7							4.81	
DN05	3.82	1.32	5.14	A	CoeVar A					164	26.9%		24.4%							4.3%	
DN05	3.82	1 32	5.14	B	S1	33	0.105	1610	9.0	229	65		13.3								
DNBS	3.82	1.32	5.14	B	82	3.5	0.105	449	34.4	265	36		24.8								
DN05	3.82	1.32	5.14	B	1	3.5	0.111	409	37.8	289	24	41.7	38.2							5.11	
DN85	3.82	1.32	5.14	В	2	3.5	0.111	387	39.9	307	18	26.0	51.9							5.14	
DN05	3.82	1.32	5.14	B	3	3.5	0.111	375	41.2	325	18	20.0	51.9							5.41	
DN85	3.82	1.32	5.14	В	4	5.7	0.181	600	41.9	341	16	17.3	58.8								
DNUS	3.82	1.32	5.14	B	5	5.8	0.185	557	40.0	355	14	16.0	67.7								
DN05	3.82	1.32	5.14	B	7	2.8	0.185	719	97.9	370	15	13.3	87.5								
DN05	3.82	1.32	5.14	B	8	8.2	0.261	672	53.9	391	10	12.0	96.8		<u> </u>	<u> </u>					
DN05	3.82	1.32	5.14	B	9	7.9	0.251	687	50.7	401	10	10.3	96.8								
DN05	3.82	1.32	5.14	В	10					411	10	10.0	96.8								
DN05	3.82	1.32	5.14	B	11					420	9	9.7	108.3								
DN05	3.82	1.32	5.14	B	12					429	9	9.3	108.3								
DNUS	3.82	1.32	5.14	B	13 Mars 10	2.60	0.11	200.32	20.42	439	10	9.3	90.8								
DN05	3.02	1.32	5.14	B	Mean H2	5.20	0.11	565.67	45.09												
DN05	3.82	1.32	5.14	B	Mean H3	8.10	0.16	692.33	51.67												
DN05	3.82	1.32	5.14	B	CoeVar H1	0.0%	0.0%	4.4%	4.4%												
DN05	3.82	1.32	5.14	B	CoeVar H2	1.0%	1.0%	5.5%	6.3%												
DN05	3.82	1.32	5.14	B	CoeVar H3	2.1%	2.1%	3.4%	3.7%												
DN05	3.82	1.32	5.14	B	Median B						14		67.7		<u> </u>						
DNUS	3.82	1.32	5.14	B	W Mean B SI-end						29.5		30.7								
DNBS	3.02	1.32	5.14	B	W Mean B 52-end W Mean B Lend						10.5		63.6								
DN05	3.82	1.32	5.14	B	W Mean B 3-7						18.6		50.0								
DN85	3.82	1.32	5.14	B	Mean B 3-7						18.0		51.9								
DN05	3.82	1.32	5.14	В	Mean B 4-8						16.2		58.0								
DN05	3.82	1.32	5.14	B	Mean B 8-12						11.2		85.8							6.00	
DN05	3.82	1.32	5.14	B	Mean B CoeVer B						47.3%		91.3							5.22	
DN05	3.82	1 32	5.14	c	Initial					174	ort at		60.479							10.476	
DN85	3.82	1.32	5.14	C	S1					238	64		13.5								
DN05	3.82	1.32	5.14	C	S2					272	34		26.4								
DN85	3.82	1.32	5.14	C	1					294	22	40.0	41.9							5.51	
DN05	3.82	1.32	5.14	C	2					313	19	25.0	49.0							5.15	
DNUS	3.82	1.32	5.14	C	3					331	18	19.7	51.9							5.19	
DNUS	3.02	1.34	2.14	č	4					347	10	16.7	20.0		<u> </u>						
DN05	3.82	1.32	5.14	č	6					374	11	14.3	87.5								
DN05	3.82	1.32	5.14	C	7					380	*Rock										
DN05	3.82	1.32	5.14	C	Median C						18.5		50.4								
DN05	3.82	1.32	5.14	C	W Mean C S1-end						35.3		25.4								
DN05	3.82	1.32	5.14	C	W Mean C S2-end						21.8		42.4								
DN05	3.82	1.32	5.14	C	Wittean Cliend						17.7		52.9			-					
DN05	3.82	1.32	5.14	c	Mean C 3-7						18.2		51.5								
DN05	3.82	1.32	5.14	č	Mean C 4-8						16.0		58.8								
DN05	3.82	1.32	5.14	č	Mean C						17.0		58.0							5.28	
DN05	3.82	1.32	5.14	C	CoeVar C						21.7%		38.6%							19.5%	
DN05	3.82	1.32	5.14	D	1									1988.6	1958.9		1942.4	100.8%	102.4%	4.66	
DN05	3.82	1 32	5.14	E	1									1988.6	00144	1885.9	1942.4	97.1%	102.4%	5.30	
DN05	3.82	1.32	5.14	D	2									1988.0	2046.0	2066.2	1942.4	105.3%	102.4%	4.62	
DN05	3.82	1 32	5.14	DE	Mean DE									1988.6	2002.4	1976.1	1942.4	100.49%	102.476	4 93	5.06
DN05	3.82	1.32	5.14	DE	CoeVar DE									1,00.0	3.1%	6.5%	L-16.7	4.2%		33.9%	2.00

ample II)	Gradation				Location			LWD			D	CP				12	Density	5		Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
					#	IkNI	IMPal	[mm]	IMPal	imml	fmm blowl	Imm blowl	IMPal	lkg/m31	lkg/m31	[kg/m3]	lkg/m31	1%	1261	1%1	12/61
DN5	3.82	1.32	5.14	A	Instal	p in the second		1.000	1	90			S. Street	CITED STATE	0.000	1	1.000				
DNS	3.82	1.32	5.14	A	S1					169	79		10.8								
DN5	3.82	1.32	5.14	A	S2					204	35		25.6								
DNS	382	1 32	5.14	A	1					231	27	47.0	33.7	1						5.37	
DNS	3.62	1.32	2.14	A	4					200	24	26.7	38.2			-				5.17	
DNS	3.82	1 32	514		2					302	23	237	38.2					-		9.92	
DNS	3.82	1.32	514	A	5					324	22	23.0	41.9								
DN5	3.82	1.32	5.14	A	6					351	27	24.3	33.7								
DN5	3 82	1 32	514	A	7	1			3		N		2	- (c		1		(
DN5	3.82	1.32	5.14	A	- 8	-				-	1				-						
DNS	3.82	1 32	514	A	Median A	-					25.5		5.8								
DNS	3.02	1.32	5.14	A	W Mean A SI-end						92.5		20.0	-							
DNS	3.82	1 32	514	A	W Mean A 1-end	÷				-	24.6		372	-			-	-			
DNS	3.82	1.32	5.14	A	W Mean A 3-7						24.1		38.0	-							1
DN5	3.82	1.32	5.14	A	Mean A 3-7	1					24.0		38.2	4							
DN5	3.82	1.32	5.14	A	Mean A 4-8						24.0		38.2	1							
DNS	3.82	1.32	5.14	A	Mean A						24.5		37.6	1						4.99	
DNS	3 82	1 32	5.14	R	CoeVar A			11.	1	62	8.5%		8.8%	2						0.10	
DNS	3.82	1.32	5.14	B	81	overload	na	na	na	155	87		97								
DN5	3.82	1.32	5.14	B	S2	3.3	0.105	1261	11.5	191	36		24.8								
DN5	3.82	1.32	5.14	В	1	3.2	0.102	1184	11.9	219	28	50.3	32.4							5.25	
DN5	3.82	1.32	5.14	B	2	3.3	0.105	1147	12.7	248	29	31.0	31.3							4.98	
DN5	3.82	1.32	5.14	В	3	3.3	0.105	1111	13.1	278	30	29.0	30.2							5.06	
DNS	3.82	1.32	5.14	B	4	5.3	0.169	1539	15.2	307	29	29.3	31.3								
DNS	3.82	1 32	5.14	B	6	54	0.173	1402	17.0	3.50	23	61.5	40.0								
DN5	3.82	1.32	5.14	B	7	7.6	0.242	1676	20.0												
DN5	3.82	1.32	5.14	В	8	7.6	0.242	1626	20.6												
DN5	3.82	1.32	5.14	В	9	7.6	0.242	1568	21.4												
DN5	3.82	1.32	5.14	B	Mean H1	3.27	0.104	1147.33	12.58						<u> </u>						
DNS	3.82	1.32	5.14	В	Mean H2	5.40	0.17	1407.07	10.27												
DNS	3.02	1.32	5.14	B	CoeVor H1	1.8%	1.8%	3 7%	4 294												
DN5	3.82	1 32	514	B	CoeVar H2	22.5%	22.5%	15 5%	10.8%												
DN5	3.82	1.32	5.14	В	CoeVar H3	16.3%	16.3%	8.9%	9.0%												
DN5	3.82	1.32	5.14	B	Median B						29		31.3								
DN5	3.82	1.32	5.14	B	W Mean B S1-end						48.7		18.0							i	
DN5	3.82	1.32	5.14	B	W Mean B S2-end						29.7		30.5								
DNS	3.82	1 32	5.14	P.	W Mean B 1-end						28.0		32.4							i	
DN5	3.82	1.32	5.14	B	Mean B 3-7						27.8		32.7		<u> </u>						
DN5	3.82	1.32	5.14	B	Mean B 4-8						27.8		32.8							(
DN5	3.82	1.32	5.14	В	Mean B						27.8		33.0							5.10	
DN5	3.82	1.32	5.14	B	CoeVar B						10.0%		12.0%		<u> </u>					2.7%	
DNS	3.82	1.32	5.14	2	instrail C1					19	27		0.7								
DNS	3.82	1.32	5.14	č	82					283	37		24.1								
DN5	3.82	1.32	5.14	č	1					229	26	50.0	35.1							5.05	
DN5	3.82	1.32	5.14	C	2					250	21	28.0	44.0							5.00	
DN5	3.82	1.32	5.14	С	3					273	23	23.3	40.0							5.46	
DN5	3.82	1.32	5.14	C	4					295	22	22.0	41.9								
DN5	3.82	1.32	5.14	C	5 Median C					311	10	20.3	58.8	_							
DN5	3.82	1.32	5.14	č	W Mean C S1-end						48.8		18.0								
DN5	3.82	1.32	5.14	č	W Mean C S2-end						25.9		35.3								
DN5	3.82	1.32	5.14	C	W Mean C 1-end						22.1		41.7								
DN5	3.82	1.32	5.14	C	W Mean C 3-7						22.1		41.7								
DN5	3.82	1.32	5.14	C C	Mean C 3-7						21.6		42.7							I	
DNS	3.82	1 32	5.14	C	Mean C 4-8						20.5		45.2							5.17	
DNS	3.82	1.32	5.14	č	CoeVar C						16.9%		20.3%							4.9%	
DN5	3.82	1.32	5.14	D	1						10.710		60.319		1978.5		1942.4	101.9%	0.0%	5.19	
DN5	3.82	1 32	5.14	E	1										1913.7		1942.4	98.5%	0.0%	5.13	
DN5	3.82	1.32	5.14	DE	Mean DE										1946.1		1942.4	100.2%		5.16	5.10
DNS	3.82	1.32	5.14	DE	CoeVar DE										2.4%			2.4%		0.9%	

ample ID	8 - S	Gradati	m	8	Location		1	WD			D	CP	12	1			Density	-	4	Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
						[kN]	[MPa]	[mm]	[MPa]	[mm]	[mm blow]	[mm/blow]	[MIPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%]	[%]
DN07	3.82	1.32	5.14	A	Instal	s in other		10 - 10 C		63	66	-	121	and and							
DN07	3.82	1.32	5.14	Â	S2					162	33		27.3								
DN07	3.82	1 32	5.14	A	1					187	25	41.3	36.6	ų						6.33	
DN07	3.82	1.32	5.14	A	2					207	20	26.0	40.4	-		-				6.37	
DN07	3.82	1.32	5.14	Â	Ä				-	243	18	18.7	51.9								
DN07	3.82	1.32	514	A	5					260	17	177	55.1								
DN07	3.82	1.32	5.14	A	0					275	15	15.7	62.9	-		12					
DN07	3.82	1.32	5.14	A	8	-				305	15	15.0	62.9								
DN07	3.82	1 32	5.14	A	9					318	13	14.3	73.3								
DN07	3.82	1.32	5.14	A	10				-	327	HIT		-	-			-			(
DN07	3.82	1.32	5.14	A	12	<u>k</u>							1			1 43				1	
DN07	3.82	1 32	514	A	13						10		(1.0								-
DN07	3.82	1.32	5.14	A	W Mean A S1 end						32.4		27.8					-			-
DN07	3.82	1.32	5.14	A	W Mean A S2-end						20.6		44.9								-
DN07	3.82	1 32	5.14	A	W Mean A 1-end	1			-		18.0		51.9							(-
DN07	3.82	1.32	5.14	A	W Mean A 3-7 Mean A 3-7				-		20.0		40.3			-					
DN07	3.82	1.32	5.14	Â	Mean A 4-8						17.6		53.1								
DN07	3.82	1 32	514	A	Mean A						17.3		56.0							6.47	
DN07	3.82	1.32	5.14	A	CoeVar A					48	20.6%		19:4%	-		12				20.6%	
DN07	3.82	1.32	5.14	B	SI	3.2	0.102	963	14.7	128	70		12.3								
DN07	3 82	1.32	5.14	В	S2	3.5	0.111	453	34.1	164	36	10.0	24.8								
DN07	3.82	1.32	5.14	B	1	3.6	0.115	426	37.3	189	25	43.7	36.6							6.59	_
DN07	3.82	1.32	5.14	B	3	3.6	0.115	395	40.2	228	19	21.3	49.0							6.45	
DN07	3 82	1.32	5.14	B	4	3.6	0.115	386	41.2	245	17	18.7	55.1								
DN07	3.82	1.32	5.14	B	5	5.9	0.188	606	43.0	260	15	17.0	62.9								
DN07	3.82	1 32	5.14	B	7	5.9	0.188	579	45.0	273	13	13.3	73.5			-	-				
DN07	3.82	1.32	5.14	B	8	8.5	0.271	768	48.8	296	11	12.0	87.5								
DN07	3.82	1.32	5.14	B	9	8.5	0.271	748	50.2	308	12	11.7	79.8								
DN07	3.82	1.32	5.14	B	10	8.5	0.271	733	51.2	318	10	11.0	96.8								
DN07	3.82	1.32	5.14	B	12	3.5	0.111	383	40.3	524											
DN07	3.82	1.32	5.14	B	13	3.5	0.111	383	40.3												
DN07	3.82	1.32	5.14	B	14	3.4	0.108	166	90.4												
DN07	3.82	1.32	5.14	B	Mean HI	3.53	0.095	406.00	38.44												
DN07	3.82	1.32	5.14	B	Mean H2	5.13	0.16	528.67	42.65												
DN07	3.82	1.32	5.14	B	Mean H3	7.63	0.24	698.33	47.99												
DN07	3.82	1.32	5.14	B	CoeVar H1 CoeVar H2	3.3%	3.3%	4.3%	4.1%												<u> </u>
DN07	3.82	1.32	5.14	B	CoeVar H3	19.7%	19.7%	14.9%	5.6%												
DN87	3.82	1.32	5.14	В	Median B						16		58.8								
DN07	3.82	1.32	5.14	B	W Mean B S1-end						33.7		26.6							<u> </u>	
DN07	3.82	1.32	5.14	B	W Mean B 1-end						16.7		56.0								
DN07	3 82	1.32	5.14	B	W Mean B 3-7						19.8		46.9								
DN07	3.82	1.32	5.14	B	Mean B 3-7						19.2		48.4							L	
DN07	3.82	1.32	5.14	B	Mean B 8-12]	11.6	-	82.7			1	1	1]		<u> </u>
DN07	3.82	1.32	5.14	B	Mean B						15.4		86.0							6.43	
DN07	3.82	1.32	5.14	B	CoeVar B					60	31.1%		23.0%							17.1%	
DN07	3.82	1.32	5.14	č	S1					131	72		11.9								
DN07	3.82	1.32	5.14	Ċ	\$2 \$2					165	34		26.4								
DN07	3.82	1.32	5.14	C	1					188	23	43.0	40.0							6.42	
DN07	3.82	1.32	5.14	C	3					207	19	25.3	49.0							6.33	
DN07	3.82	1.32	5.14	č	4					239	14	17.0	67.7								
DN07	3.82	1.32	5.14	C	5					253	14	15.3	67.7								
DN07	3.82	1.32	5.14	C	6					200	13	13.7	/3.3								
DN07	3.82	1.32	5.14	č	8					280	7	9.0	141.4								
DN07	3.82	1.32	5.14	C	9					288	8	7.3	122.7								
DN07	3.82	1.32	5.14	C	10 Median C					295	*Rock		622								
DN07	3.82	1.32	5.14	č	W Mean C SI-end						36.1		24.7								
DN07	3.82	1.32	5.14	č	W Mean C S2-end						19.7		47.1								
DN07	3.82	1.32	5.14	C	W Mean C I-end						15.7		59.8								
DN07	3.82	1.32	5.14	C	W Mean C 3-7						18.3		51.1								
DN07	3.82	1.32	5.14	č	Mean C 4-8						15.6		60.4								
DN07	3.82	1.32	5.14	с	Mean C						16.8		58.3							6.35	
DN07	3.82	1.32	5.14	C	CoeVar C						23.0%		74.8%	2042.2	2012.4		1042.4	102 78/	106.39/	6.5%	
DN07	3.82	1.32	5.14	E	1									2042.8	2013.4	2056.2	1942.4	103.7%	105.2%	6.18	
DN07	3.82	1.32	5.14	D	2									2042.8	1929.1	0070 0	1942.4	99.3%	105.2%	6.61	
DN07	3.82	1.32	5.14	E	2									2042.8	1071.5	1978.7	1942.4	101.9%	105.2%	6.50	6.40
DN07	3.82	1.32	5.14	DE	CoeVar DE									2042.8	3.0%	2017.4	1942.4	102.7%		0.45	0.42

Sample ID	(Gradation	1		Location			LWD			D	CP					Density			Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	F	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
			2 7-020107	2 2410 3 2 21000	-	IkN1	IMPal	limini	IMPal	imml	Imm blowi	Imm blowl	IMPal	lkg/m31	lkg/m31	[kg/m3]	lkg/m31	1%]	1%1	[%]	12/61
DN7	3.82	1.32	5.14	A	Instal	The Same				82								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
DN7	3.82	1.32	5.14	A	S1					161	79		10.8								
DN7	3.82	1.32	5.14	A	S2					196	35		25.6								1
DN7	3.82	1 32	5.14	A	1		1			224	28	47.3	32.4	3		18		1		6.87	· · · · · · · · · · · · · · · · · · ·
DN7	3.82	1.32	5.14	A	2					256	32	31.7	28.2	3						7.15	
DN7	3 82	1 32	5.14	A	3					274	18	26.0	51.9	_						7.18	
DN7	3.82	1.32	5.14	A	4	-				298	24	24.7	38.2	-							
DN/	3.82	1.52	914	A	Median A				-		30		30.2				-				
DN7	3.82	1.32	2.14	A	W Mean A SI-end						97.1		18.7								
DN7	3.06	1 32	5.14		W Mean A Land						26.5		34.3							-	
DN7	3.82	1.32	514	A	W Mean A 3.7				-		26.5		34.3	-				-			
DN7	3.82	1.32	5.14	A	Mean A 3-7						25.5		35.8								
DN7	3.82	1 32	5.14	A	Mean A 4-8	7. T				5	24.7		371	1		18		5		the second second	
DN7	3.82	1.32	5.14	A	Mean A		i		();		25.5	()	37.7	3		18	5	2		7.07	
DN7	3.82	1.32	5.14	A	CoeVar A						23.4%		27.4%	(0.02	
DN7	3.82	1.32	5.14	B	Instal	A month				68	and the second		O Destant	2		1					
DN7	3.82	1.32	5.14	B	SI	overload	na	na	na	144	76		11.2	1		-					
DN7	3.82	1.32	5.14	B	53	3.3	0.105	1311	12.0	- 179	35	46.7	35.0							2.41	
DN7	3.92	1.32	5.14	B	2	3.3	0.105	230	17.6	200	26	40.7	35.1							7.41	
DN7	3.82	1.32	5.14	B	3	33	0.105	774	18.8	262	28	277	32.4		<u> </u>	<u> </u>				7.10	
DN7	3.82	1.32	5.14	B	4	5.5	0.175	1112	21.8	290	28	27.3	32.4								
DN7	3.82	1.32	5.14	В	5	5.5	0.175	1011	24.0	319	29	28.3	31.3								
DN7	3.82	1.32	5.14	В	6	5.5	0.175	954	25.4												
DN7	3.82	1.32	5.14	В	7	7.9	0.251	1175	29.7												
DN7	3.82	1.32	5.14	B	8	8.1	0.258	1117	32.0												
DN7	3.82	1.32	5.14	B	9	8.1	0.258	1071	33.4												
DN7	3.82	1.32	5.14	B	Mean Hi	3.30	0.105	847.00	17.30												
DN7	3.82	1.32	5.14	B	Mean H2	5.50	0.175	1025.67	23.70												
DN7	3.04	1.32	5.14	D B	CoeVer H1	0.03	0.250	0.7%	9.5%												
DN7	3.82	1.32	5.14	B	CoeVar H2	0.0%	0.0%	7.9%	7.7%												
DN7	3.82	1.32	5.14	В	CoeVar H3	1.4%	1.4%	4.6%	5.9%												
DN7	3.82	1.32	5.14	B	Median B						29		31.3								
DN7	3.82	1.32	5.14	B	W Mean B S1-end						43.5		20.3								
DN7	3.82	1.32	5.14	B	W Mean B S2-end						29.4		30.8								
DN7	3.82	1.32	5.14	B	W Mean B 1-end						28.0		32.4								
DN7	3.82	1.32	5.14	В	W Mean B 3-7						28.0		32.4								
DN7	3.82	1.32	5.14	B	Mean B 3-7						28.0		32.4								
DN7	3.82	1.32	5.14	B	Mean B					-	27.6		32.5		-	1	-			7.83	ļ
DN7	3.82	1.32	5.14	B	CoeVar B						4.4%		4.8%							1.7%	
DN7	3.82	1.32	5.14	C	Initial					77											
DN7	3.82	1.32	5.14	C	S1					157	80		10.6								
DN7	3.82	1.32	5.14	C	\$2					193	36		24.8								
DN7	3.82	1.32	5.14	С	1					220	27	47.7	33.7							7.46	
DN7	3.82	1.32	5.14	<u> </u>	2					246	26	29.7	35.1							7.12	
DN7	3.82	1.32	5.14	C	3					269	23	25.3	40.0							7.40	
DN7	2.02	1.32	2.14	č	4					291	26	23.7	41.9								
DN7	3.82	1.32	5.14	Č	Median C					510	26	J. J	35.1								
DN7	3.82	1.32	5.14	č	W Mean C SI-end						44.9		19.6								
DN7	3.82	1.32	5.14	č	W Mean C S2-end						27.3		33.3								
DN7	3.82	1.32	5.14	Ċ	W Mean C I-end						24.7		37.0								
DN7	3.82	1.32	5.14	С	W Mean C 3-7						24.7		37.0								
DN7	3.82	1.32	5.14	C	Mean C 3-7						24.6		37.2								
DN7	3.82	1.32	5.14	С	Mean C 4-8						24.0		38.2								
DN7	3.82	1.32	5.14	C	Mean C						24.6		37.5							7.33	
DN7	3.82	1.32	5.14	C	CoeVar C						8.4%		9.1%	1050 7	1014.1		1042.4	02.407	100.497	2.5%	
DN7	3.62	1.32	5.14	D E	1									1950.7	1014.1		1942.4	93.4%	100.4%	7.19	
DN7	3.82	1 32	5.14	DE	Mean DE									1950.7	1223.2		1942.4	97.0%	100.478	7.19	7 19
DN7	3.82	1.32	5.14	DE	CoeVar DE									1,530.7	5.2%		1.12.1	5.2%		2.4%	
				ALC: 10.0											and the second second			100 March 100 Ma		100 C 10 C 10	

Sample ID) Gradation				Location	1		LWD			D	CP					Density		1	Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
· · · · · · · · · · · · · · · · · · ·	-0101				#	[kN]	[MPa]	[mm]	[MPa]	imm	[mm/blow]	[mm blow]	IMPal	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%+]	1%1
DN10	3.82	1.32	5.14	A	Instal	1 10 King	10 - 10 - g	1 22 332	- 12 - 12 - I	80	100 C	100 C.	10 Mar 10	- titl offer		1	1000	- 22 DD (23 23 C		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
DN10	3.82	1.32	5.14	A	S1					208	128		6.5	2							
DN10	3.82	1.32	5.14	A	S2					298	90		9.4								
DNI0	3.82	1 32	5.14	A	1	2	1			330	HIT			3		1				10.07	
DN10	3.82	1.32	5.14	A	2	8					1 00000			5	1					9.95	
DN10	3 82	1 32	5.14	A	3															10.27	
DNIO	3.82	1.32	5.14	A	4	1	-														
DN10	3.82	1.32	5.14	A	Median A									1							
DN10	3.82	1.32	5.14	A	Mean A															10.10	
DNIU	3.82	1 32	5.14	A	CoeVar A	1	1				1			ų —		2				0.02	
DNIO	3.82	1.32	5.14	B	Initial	1			-	88				-							
DNIU	3.82	1 32	514	В	SI	overload	na	na	na	201	113		74			-					
DNIU	5.84	1.32	5.14	B	52	overload	na	na	na	279	18		10.9							10.00	
DNIU	3.82	1 32	0.14	B		21	0.086	2114	2.0	310	HIL			-		<u> </u>	-			10.08	
DNIU	3.84	1.04	2.14	D	4	2.4	0.102	2067	0.0							N				10.15	
DNIO	3.82	1.32	2.14	D		6.2	0.067	1915	11.0											9.70	
DN10	2.04	1.22	5.14	P		2.2	0.105	1774	11.2	-				-							
DNIO	3.02	1.32	5.14	B		5.2	0.166	1995	12.1					-							
DNI	3.82	1.34	5.14	B	2	73	0.100	2008	16.0												
DNI	3.82	1 32	5.14	D D	8	7.5	0.239	1841	18.0					-							
DN10	3.82	1.32	5.14	B	9	7.4	0.236	1813	18.0												
DN10	3.82	1.32	5.14	B	Mean HI	2.67	0.085	2038.00	5.75												
DN10	3.82	1.32	5.14	B	Mean H2	5.23	0.167	1955.33	11.82												
DN10	3.82	1.32	5.14	B	Mean H3	7.40	0.236	1887.33	17.35												
DN10	3.82	1.32	5.14	B	CoeVar H1	20.7%	20.7%	5.4%	16.8%												
DN10	3.82	1.32	5.14	B	CoeVar H2	1.1%	1.1%	2.5%	2.4%												
DN10	3.82	1.32	5.14	B	CoeVar H3	1.4%	1.4%	5.6%	6.5%												
DN10	3.82	1.32	5.14	B	Median B																
DN10	3.82	1.32	5.14	B	Mean B															9.97	
DN10	3.82	1.32	5.14	B	CoeVar B															2.4%	
DN10	3.82	1.32	5.14	c	Instial					97											
DN10	3.82	1.32	5.14	C	SI					208	111		7.5								
DN10	3.82	1.32	5.14	C	SZ					290	82		10.4								
DN10	3.82	1.32	5.14	C	1					333	HIT									10.25	
DN10	3.82	1.32	5.14	C	2															9.23	
DN10	382	1 32	5.14	C C	3					-					-					9.04	
DN10	3.02	1.32	5.14	č	4 Medice C																
DN10	3 82	1 32	5.14	č	Mean C															0.71	
DN10	3.92	1.32	5.14	č	CoeVer C						-				-					5.39/	
DN10	3.82	1 32	5.14	D	1									1999.1	2068.2		1942.4	106.5%	102.986	10.12	
DN10	3.82	1.32	5.14	E	1									1999 1	1958.9		1942.4	100.8%	102.9%	10.12	
DN10	3.82	1.32	5.14	DE	Mean DE									1999.1	2013.5		1942.4	103.7%	100,710	10.20	9.99
DN10	3.82	1.32	5.14	DE	CoeVar DE										3.8%			3.8%		1.1%	

Nome Nome </th <th>Sample ID</th> <th colspan="3">0 Gradation</th> <th>8 - 3</th> <th>Location</th> <th>1</th> <th></th> <th>LWD</th> <th></th> <th></th> <th>D</th> <th>CP</th> <th></th> <th></th> <th></th> <th></th> <th>Density</th> <th></th> <th></th> <th>Moisture</th> <th>Content</th>	Sample ID	0 Gradation			8 - 3	Location	1		LWD			D	CP					Density			Moisture	Content
Image: Proper transformed pr	Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
DUCK 32 33 34 35 34 35 34 35 34 35 3	- 100000-2000	-0101				#	[kN]	[MPa]	[mm]	IMPal	imm	[mm/blow]	[mm blow]	IMPal	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%+]	1%
BMICK 328 128 324 </td <td>DN10X2</td> <td>3.82</td> <td>1.32</td> <td>5.14</td> <td>A</td> <td>Instal</td> <td>1 in this 1</td> <td>10 - 10 - 1</td> <td>1 22 332</td> <td></td> <td>108</td> <td>1.1.1</td> <td>22 - C22</td> <td>1</td> <td>i tini sirey</td> <td></td> <td>1</td> <td>12222</td> <td>NY 16 (</td> <td>24 A.</td> <td></td> <td></td>	DN10X2	3.82	1.32	5.14	A	Instal	1 in this 1	10 - 10 - 1	1 22 332		108	1.1.1	22 - C22	1	i tini sirey		1	12222	NY 16 (24 A.		
BHURD 38 1.8 3.9 4.4 A 52 H 10 <th< td=""><td>DN18X2</td><td>3.82</td><td>1.32</td><td>5.14</td><td>A</td><td>S1</td><td></td><td></td><td></td><td></td><td>211</td><td>103</td><td></td><td>8.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	DN18X2	3.82	1.32	5.14	A	S1					211	103		8.1								
BNUEW 318 318 A. 1 I I I SPI MIT I <	DN10X2	3.82	1.32	5.14	A	S2					292	81		10.5								
Bellow 338 138 354 4.4 A 2 Image: Second S	DN18X2	3.82	1 32	5.14	A	1	1				320	HIT			1		1				10.40	
DNUMC 328 130 514 A 1 Image	DN10X2	3.82	1.32	5.14	A	2	S					1 00000			1	1					10.51	
Delling: 338 132 514 A Material Image: Second	DN10X2	3 82	1 32	5.14	A	3															9.98	
DNINCC 338 139 5.46 A Mean A	DN10X2	3.82	1.32	5.14	A	4	1												-			_
DBMBQ2 3.3 1.3 3.4 A. Member A (0.3) max	DN10X2	3.82	1.32	5.14	A	Median A	9								1							
DNICC 338 139 348 6 A CPV A Image	DN10X2	3.82	1.32	5.14	A	Mean A															10.30	
DNIAGE All Bit Bit<	DN10X2	3.82	1 32	514	A	CoeVar A	1	-			-	1		1	1		2	1			0.03	
DNINC 332 132 314 B S1 overhal N All All <td>DN10X2</td> <td>3.82</td> <td>1.32</td> <td>5.14</td> <td>B</td> <td>Initial</td> <td>1</td> <td></td> <td></td> <td>-</td> <td>86</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>II. CONTRACTOR</td> <td></td>	DN10X2	3.82	1.32	5.14	B	Initial	1			-	86										II. CONTRACTOR	
DNIMOX 388 138 138 638 638 638 638 638 638 638 648 638 648<	DN18X2	3.82	1 32	514	В	SI	overload	na	na	na	201	115		7.2	-							
DNIXE 324 123 213 314 B103 193 24 270 PLI Description Description <thdescription< t<="" td=""><td>DNI0X2</td><td>5.84</td><td>1.32</td><td>5.14</td><td>B</td><td>52</td><td>overload</td><td>na</td><td>na</td><td>na</td><td>270</td><td>09</td><td></td><td>12.5</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>10.44</td><td></td></thdescription<>	DNI0X2	5.84	1.32	5.14	B	52	overload	na	na	na	270	09		12.5	-						10.44	
DNIX 346 136 24 24 0.103 24 0.103 24 0.103 24 0.103 24 0.103 2010 0.103	DNIIIX2	3.82	1 32	5.14	8		3.3	0.100	1994	15	299	HIL			1		<u> </u>				10.56	
DNIX 328 132 214 5 3 313 1018 103	DNIUX2	3.84	1.04	2.14	D D	4	2.4	0.108	1090	2.4				-	-		N				9.95	
DNION 2.98 1.42 2.94 8 7 2.3 8.192 1.910 1.42 0<	DN10X2	3.82	1.32	2.14	D D		2.9	0.108	1995	12.0		-									10.16	
DNIOR 352 132 132 142 1427 158 Description	DMIOX2	2.04	1.22	5.14	D		2.2	0.107	1031	12.0	-				1							
DN1002 232 123 141 5 0 123 123 124	DMI0X2	3.02	1.32	5.14	B		5.1	0.166	1457	16.9				-				-				
DN1032 332 133 514 D 8 76 0.242 1432 257 0	DN18V2	3.82	1.34	5.14	B	2	22	0.100	1580	21.5												
DN1022 382 132 514 B 9 76 0.422 144 22.6 P	DN10X2	3.82	1 32	5.14	D.	8	7.8	0.248	1453	23.7					-							
DN1032 332 1.32 5.14 B Mean HI 3.37 0.107 1678 33 8.88 Image: Constraint of the second of	DN10X2	3.82	1.32	5.14	B	9	7.6	0.242	1484	22.6												
DN1032 332 132 514 B Meas H2 5.20 0.105 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 0.325 0.00 <td>DN10X2</td> <td>3.82</td> <td>1.32</td> <td>5.14</td> <td>B</td> <td>Mean HI</td> <td>3.37</td> <td>0.107</td> <td>1678.33</td> <td>8.98</td> <td></td>	DN10X2	3.82	1.32	5.14	B	Mean HI	3.37	0.107	1678.33	8.98												
DN1072 332 132 514 B Mealiji 7.70 0.245 1595.67 22.60 m	DN10X2	3.82	1.32	5.14	B	Mean H2	5.20	0.166	1686.00	13.75												
DN1032 332 132 514 B CerVar H1 1.7% 1.40% H 8% Image: CerVar H3 1.3% 1.9% 1.18% Image: CerVar H3 1.3% 1.9% 1.18% Image: CerVar H3 1.3% 1.9% 1.18% Image: CerVar H3 1.3% 1.9% 1.19% 1.20% Image: CerVar H3 1.3% 1.9% 1.19% 1.20% Image: CerVar H3 1.3% 1.9% 1.19% 1.20% Image: CerVar H3 1.3% 1.9% 1.20% Image: CerVar H3 1.3% 1.9% 1.20% Image: CerVar H3 1.3% 1.4% 4.4% 4.8% Image: CerVar H3 1.3% 1.4% 1.20% Image: CerVar H3 1.3% 1.4% Image: CerVar H3 1.3% 1.4% Image: CerVar H3	DN10X2	3.82	1.32	5.14	B	Mean H3	7.70	0.245	1505.67	22.60												
DN1032 332 1.32 5.14 B CoeVar H2 1.9%	DN10X2	3.82	1.32	5.14	B	CoeVar H1	1.7%	1.7%	14.0%	14.8%												
DN10X2 322 132 514 B CecVar H3 1.3% 1.3% 4.4% 4.8% C <thc< th=""> C <thc< th=""> <th< td=""><td>DN10X2</td><td>3.82</td><td>1.32</td><td>5.14</td><td>B</td><td>CoeVar H2</td><td>1.9%</td><td>1.9%</td><td>11.9%</td><td>12.6%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thc<></thc<>	DN10X2	3.82	1.32	5.14	B	CoeVar H2	1.9%	1.9%	11.9%	12.6%												
DN1032 332 132 514 B Mefaa B	DN10X2	3.82	1.32	5.14	B	CoeVar H3	1.3%	1.3%	4.4%	4.8%												
DN1072 322 132 514 B Mean	DN10X2	3.82	1.32	5.14	B	Median B																
DN1072 382 132 514 B CovVar B Instal B CovVar B B D D D D D D D D D D D D D D D	DN10X2	3.82	1.32	5.14	B	Mean B															10.22	
DN1072 322 1.52 5.14 C Infral	DN10X2	3.82	1.32	5.14	B	CoeVar B															3.0%	
DN1072 382 132 514 C S1 DN1072 382 132 514 C S2 DN1072 382 132 514 C S2 DN1072 382 132 514 C I DN1072 382 132 514 C I DN1072 382 132 514 C I DN1072 382 132 514 C 3 DN1072 382 132 514 C 3 DN1072 382 132 514 C 3 DN1072 382 132 514 C 4 DN1072 382 132 514 C Median C DN1072 382 <td>DN10X2</td> <td>3.82</td> <td>1.32</td> <td>5.14</td> <td>C C</td> <td>Instial</td> <td></td> <td></td> <td></td> <td></td> <td>83</td> <td></td>	DN10X2	3.82	1.32	5.14	C C	Instial					83											
DN10X2 322 1.32 5.14 C S2 DN10X2 322 1.52 5.14 C 2 DN10X2 322 1.52 5.14 C 3 DN10X2 322 1.52 5.14 C 4 DN10X2 322 1.54 C Median C DN10X2 322 1.54 D 1 <td< td=""><td>DN10X2</td><td>3.82</td><td>1.32</td><td>5.14</td><td>C</td><td>SI</td><td></td><td></td><td></td><td></td><td>188</td><td>105</td><td></td><td>8.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	DN10X2	3.82	1.32	5.14	C	SI					188	105		8.0								
DN10X2 382 1.32 514 C 1 315 HIT 0 941 941 DN10X2 382 132 514 C 3 935 HIT 0 0 932 DN10X2 382 132 514 C 3 0 0 0 0 932 DN10X2 382 132 514 C 4 0 0 0 932 DN10X2 382 132 514 C MemC 0 0 0 932 DN10X2 382 132 514 C MemC 0 0 0 932 DN10X2 382 132 514 C MemC 932 0 932 DN10X2 382 132 514 C MemC 932 0 932 0 932 DN10X2 382 132 514 C MemC 932 0 932 0 932 DN10X2 382 152 514 D <	DN10X2	3.82	1.32	5.14	C C	SZ					266	78		10.9								
DN10X2 322 1.52 5.14 C 4 9.24 DN10X2 322 1.52 5.14 C Median C 9.24 DN10X2 322 1.54 C Median C 9.24 9.25 DN10X2 322 1.54 C Median C 9.24 9.25 DN10X2 322 1.54 C Median C 9.26 9.26 DN10X2 322 1.54 D 1 9.26 9.27 9.26 DN10X2 322 1.54 D 1 9.26 9.27 9.26 DN10X2 322 1.54 E 1 9.26 1976.2 2026.6 1.942.4 103.9% 10.7% 9.74	DN18X2	3.82	1.32	5.14	C	1					315	HIT									9.41	
DN1022 382 132 514 C Methan C 932 DN1022 382 132 514 C Methan C 932 DN1022 382 132 514 C Methan C 932 DN1022 382 132 514 C C CoeVar C 932 DN1022 382 132 514 C C CoeVar C 932 DN1022 382 132 514 C C CoeVar C 932 DN1022 382 132 514 D 1 6 9% DN1022 382 132 514 D 1 9% DN1023 382 132 514 D 1 9% DN1024 382 132 514 D 1 9% DN1044 0 0% DN1044 0 0% DN10	DN10X2	3.82	1.32	5.14	C C	2															9.32	
DN1002 324 152 214 C Median C 9.32 DN1002 322 132 514 C Median C 9.74 DN1002 382 132 514 B 1 9.74 101.7% 9.74 DN1002 382 132 514 B 1 1976.2 2006.6 1942.4 103.3% 101.7% 9.74 DN1002 382 132 514 DE Median DE 1976.2 2017.9 - 1942.4 103.9% 9.96 9.96 9.95 DN1002 382 132 514 DE Median DE 1976.2	DN10X2	3 82	1.32	5.14	C C	3					-										9.24	
DY11022 382 132 514 C OreFault	DN10X2	3.82	1.32	2.14	C C	4 Madax C																
DN10X2 382 132 514 C Convar 0 <th0< th=""> <th0< th=""></th0<></th0<>	DN10X2	3 82	1 32	5.14	č	Mean C															0.32	
DNI0X2 382 132 514 D 1 </td <td>DN10X2</td> <td>3.92</td> <td>1.32</td> <td>5.14</td> <td>č</td> <td>CoeVer C</td> <td></td> <td>9.52</td> <td></td>	DN10X2	3.92	1.32	5.14	č	CoeVer C															9.52	
D11022 382 132 514 DE M <	DN1072	3 82	1 32	5.14	D	1									1076.2	2006.6		1942.4	103 394	101 784	0.74	
DNI0X2 382 132 514 DE Mean DE 1976 2017.9 - 1942.4 103.9% 9.95 DNI0X2 382 132 514 DE CorVar DE 1976.2 2017.9 - 1942.4 103.9% 9.95	DN10X2	3.82	1.32	5.14	E	1									1976.2	2020.0		1942.4	104.5%	101.7%	10.19	
DNI032 332 132 514 DE CorVar DE 0 0000 000 0000 0000 0000 0000 0000	DN1032	3.82	1 32	5.14	DE	Mean DE									1976.2	2017.9		1942.4	103.9%	101.770	9.96	0.05
	DN18X2	3.82	1.32	5.14	DE	CoeVar DE										0.8%		40.16.1	0.8%		3.2%	

Sample ID	(Gradatio	11		Location			LWD			D	CP					Density			Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
				2010 122000	#	[kN]	[MPa]	[mm]	[MPa]	[mm]	[mm/blow]	[mm blow]	[MPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%]	[%]
DN10S	3.82	1.32	5.14	A	Instal	- 10-1010 - J		2000		106	na		na	- 100 - 100 - 10			1000000	10 - 10			- 2020
DN10S	3.82	1.32	5.14	A	S1					212	106		79			1	-				
DN10S	3.82	1.32	5.14	A	SZ				-	282	70		12.3	-		-				10.46	
DNI05	3.82	1 32	514	Å	2					0.01	40		19.2			1				9.64	
DN10S	3.82	1.32	5.14	A	3											-				9.78	
DN10S	3.82	1.32	5.14	A	4																
DN10S	3.82	1.32	5 14	A	Median A	1					70		12.3	1		1				S S	
DN10S	3.82	1.32	5.14	A	W Mean A S1-end						82.2		10.3								
DNI0S	3 86	1 32	514	A	W Mean A S2-end						46.0		19.3			1					
DN105	3.82	1.32	5.14	A	W Mean A 3.7						46.0		19.2	-				-			
DN10S	3.82	1.32	5.14	A	Mean A 3-7						46.0		19.2								
DN10S	3.82	1 32	5.14	A	Mean A 4-8				1		0.0		5 2540					1			
DN10S	3.82	1.32	5.14	A	Mean A	5		1	2 2	-	46.0		19.2	1	()	3	0 0	((9.96	
DN10S	3.82	1 32	514	A	CoeVar A					-			1. 14							0.04	
DNIUS	3.62	1.32	2.14	B	initial	heatana				04	101		0.0								
DNI05	3.66	1 32	514	B	52	overload	101	na	na	253	70		12.3					-			
DN10S	3.82	1.32	5.14	B	1	3.2	0.102	2097	6.7	300	47		18.7							9.82	
DN10S	3.82	1.32	5.14	В	2	3.4	0.108	1669	9.0	314	HIT									9.74	
DN10S	3.82	1.32	5.14	B	3	3.5	0.111	1436	10.8											9.56	
DN10S	3.82	1.32	5.14	B	4	5.6	0.178	1723	14.3												
DNIUS	3.82	1.32	5.14	B	C A	5.7	0.181	1527	10.5		-										
DNI05	3.82	1.32	5.14	B	7	8	0.255	1428	24.7						<u> </u>						
DN10S	3.82	1.32	5.14	В	8	8	0.255	1412	25.0												
DNI0S	3.82	1.32	5.14	B	9	8.1	0.258	1318	27.1												
DN10S	3.82	1.32	5.14	B	Mean H1	3.37	0.107	1734.00	8.83												
DNI0S	3.82	1.32	5.14	B	Mean H2	5.67	0.180	1522.67	16.63						L						
DN10S	3.82	1.32	5.14	B	Mean H3	8.03	0.250	1386.00	25.62												
DNI05	3.82	1 32	5.14	B	CoeVar H1 CoeVar H2	4,576	4.5%	13 396	14 3%		-										
DNI0S	3.82	1.32	5.14	B	CoeVar H3	0.7%	0.7%	4.3%	5.1%												
DN10S	3.82	1.32	5.14	В	Median B						70		12.3								
DN10S	3.82	1.32	5.14	В	W Mean B S1-end						79.4		10.7								
DN10S	3.82	1.32	5.14	B	W Mean B S2-end						60.8		14.3								
DNIUS	3.82	1.32	5.14	B	W Mean B I-end						47.0		18.7								
DNI05	3.82	1.32	5.14	B	Mean B 3-7						47.0		10.7								
DN105	3.82	1.32	5.14	B.	Mean B 4-8					1	0.0]	1				-
DN10S	3.82	1.32	5.14	В	Mean B						47.0		18.7							9.71	
DN10S	3.82	1.32	5.14	B	CoeVar B															1.3%	
DN10S	3.82	1.32	5.14	C	Initial					64	101										
DN105	3.82	1.32	5.14	Č.	61					242	7.4		0.1		<u> </u>		<u> </u>				
DN105	3.82	1.34	5.14	č	1					285	43		20.6		<u> </u>		<u> </u>			9.54	
DN10S	3.82	1.32	5.14	č	2					316	HIT									9.25	
DN10S	3.82	1.32	5.14	C	3															9.67	
DN10S	3.82	1.32	5.14	С	4																
DN10S	3.82	1.32	5.14	C	Median C						74		11.6								
DNIUS	3.82	1.32	5.14	C	W Mean C S1-end						62.6		10.4								
DN105	3.82	1.32	5.14	C	W Mean C Lend						43.0		20.6								
DN10S	3.82	1.32	5.14	č	W Mean C 3-7						43.0		20.6								
DN10S	3.82	1.32	5.14	C	Mean C 3-7						43.0		20.6								
DN10S	3.82	1.32	5.14	C	Mean C 4-8						0.0										
DN10S	3.82	1.32	5.14	c	Mean C						43.0		20.6							9.49	
DN10S	3.82	1.32	5.14	C	CoeVar C									1024.0	2007.2		1042.4	102.28/	102.29/	0.2%	
DNI0S	3.04	1.32	5.14	E	1									1964.9	2007.5	2026.0	1942.4	103.3%	102.2%	9.50	
DN10S	3.82	1.32	5.14	DE	Mean DE									1984.9	2007.3	2026.0	1942.4	103.8%	106.679	9.49	9.66
DN10S	3.82	1.32	5.14	DE	CoeVar DE													0.7%		2.8%	

Sample ID		Gradation		8 8	Location		. 1	LWD			D	CP					Density			Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	F	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
						IkNI	IMPal	[mm]	IMPal	Imml	fmm blow	Imm/blow]	IMPal	lkg/m31	lkg/m31	[kg/m3]	lkg/m31	[%]	[%]	1%1	12/61
DN10C	3.82	1.32	5.14	A	Instal	i in this	1 C C 1	2 8 2	- 12 - 12 - 1	37	1		S. Same	1.1112.002.00		10000	12222	NY 22			
DN10C	3.82	1.32	5.14	A	S1					121	84		10.1					-			
DN10C	3.82	1.32	5.14	A	S2					202	81		10.5								
DNIOC	3 82	1 32	5.14	A	1	2			-	229	27		33.7	8		1				9.38	
DN10C	3.82	1.32	5.14	A	2	<u>p</u>	-		1	258	HIT					-	1			9.38	
DNIDG	382	1 32	5.14	A	3						-									8.05	
DNINC	3.82	1.32	5.14		Median A						81		10.5			-					
DN10C	3.82	1.32	5.14	A	W Mean A S1-end						74.7		11.4	-							
DNI0C	3.82	1.32	5.14	A	W Mean A S2-end	1			1		67.5		12.7	() () () () () () () () () () () () () (8	2	5			
DN10C	3.82	1.32	5.14	A	W Mean A 1-end						27.0		33.7	6			-	-			
DN10C	3.82	1 32	5.14	A	W Mean A 3-7						27.0		33.7				1	-			
DN10C	3.82	1.32	5.14	A	Mean A 3-7						27.0		33.7				-				
DNIOC	382	1.32	5 14	A	Mean A 4-8						0.0		-	1))					0.14	
DNIOC	3.02	1.32	2.14	A	Mican A						27.0		33.7							9,14	
DNIOC	3.82	1 32	5.14	B	Instal					18										0.05	
DN10C	3.82	1.32	5.14	B	SI	overload	na	na	na	119	101		8.3	1							
DN10C	3.82	1.32	5.14	B	S2	2.8	0.089	2219	5.6	192	73		11.7								
DN10C	3.82	1.32	5.14	В	1	3	0.095	1998	6.6	245	53		16.5	2		1	1			9.01	
DN10C	3.82	1.32	5.14	В	2	3.2	0.102	1814	7.8	247	HIT		1	1		1	1			9.73	
DNIOC	3.82	1.32	5.14	B	3	3.2	0.102	1709	8.3											9.13	
DNIOC	3.62	1.32	5.14	P	2	2.4	0.172	1798	13.5					1							
DNIBC	3.06	1.32	5.14	B	2	5.4	0.172	1724	13.0		-		-	-							
DNIOC	3.82	1.32	5.14	B	7	7.5	0.239	1830	18.1				6	2		18	2 5	5		1	
DN10C	3.82	1.32	5.14	В	8	7.8	0.248	1803	19.1				Q	2			1				
DN10C	3.82	1.02	5.14	D	9	7.9	0.251	1819	19.2											R	_
DN10C	3.82	1.32	5.14	B	Mean H1	3.13	0.100	1840.33	7.56												
DN10C	3.82	1.32	5.14	B	Mean H2	5.40	0.172	1764.33	13.51						<u> </u>	<u> </u>					
DNIOC	3.82	1.32	5.14	D D	Cealler HJ	7.73	0.240	1817.33	18.76						<u> </u>	<u> </u>					
DNI0C	3.82	1.34	5.14	B	CoeVar H2	J. 776	0.0%	1.2%	1.7%												
DN10C	3.82	1.32	5.14	B	CoeVar H3	2.7%	2.7%	0.7%	3.2%							<u> </u>					
DN10C	3.82	1.32	5.14	В	Median B						73		11.7								
DN10C	3.82	1.32	5.14	B	W Mean B S1-end						80.8		10.5								
DN10C	3.82	1.32	5.14	B	W Mean B S2-end						64.6		13.4								
DN10C	3.82	1.32	5.14	B	W Mean B 1-end						53.0		16.5								
DNIIIC	3 82	1.32	5.14	B	W Mean B 3-7 Mann B 3-7						53.0		10.5								
DNIRC	3.02	1.34	5.14	B	Mean B 4-2						0.0		10.2								
DN10C	3.82	1.32	5.14	B	Mean B						53.0		16.5							9.29	
DN10C	3 82	1.32	5.14	В	CoeVar B															4.1%	
DN10C	3.82	1.32	5.14	C	Initial					29											
DN10C	3.82	1.32	5.14	C	S1					125	96		8.8								
DN10C	3.82	1.32	5.14	C	S2					195	70		12.3								
DN10C	3.82	1.32	5.14	C	1					240	HIT									9.03	
DNI0C	3.82	1.32	5.14	C	3															9.04	
DN10C	3.82	1 32	5.14	č	4					-										0.54	
DN10C	3.82	1.32	5.14	č	Median C																
DN10C	3.82	1.32	5.14	C	Mean C															8.87	
DN10C	3.82	1.32	5.14	C	CoeVar C															3.2%	
DN10C	3.82	1.32	5.14	D	1									2076.0	1954.8		1942.4	100.6%	106.9%	9.52	
DN10C	3.82	1.32	5.14	E	1									2076.0	2060.2	1966.2	1942.4	101.2%	106.9%	9.54	
DN10C	3.62	1.32	5.14	D E	2									2076.0	2030.Z	2012.4	1942.4	103.5%	106.9%	9.16	
DNIIC	3.82	1 32	5.14	DE	Mean DE									2076.0	2002.5	1989.3	1942.4	103.078	100.978	9.35	9.16
DMIOC	2.02	1.22	5.14	DE	ConVer DE									1070.0	2.40/	1 /0/	A.C.16.1	2.20/		2.20/	2.19

Sample ID	(Gradation	1		Location		- 1	LWD			D	CP					Density			Moisture (Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	F	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
					=	IENI	IMPal	Imml	IMPal	Imml	from blowl	Imm blowl	IMPal	Ber/m31	Begin31	(kein3)	Ika m31	1%1	[%a]	19/41	12/61
FHIS	4 00	2.07	6.07	A	Instal		[cost of	Turnit	- Income of	5	funda osto ol	Innerstand	from of	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Tere weed	[ng me.]	ing may		1		
FHJ8	4.00	2.07	6.07	A	\$1					95	90		9.4								
FHJ8	4.00	2.07	6.07	A	S2					137	42		21.1								
FHJ8	4 00	2.07	6.07	A	1					165	28	53.3	32.4	8						7.62	
FHJ8	4.00	2.07	6.07	A	2	<u>}</u>				191	26	32.0	35.1	-	-	-	<u> </u>			7.63	
PHJ8	4 80	2.87	6.07	A	3					214	23	25.7	40.0	-		-				8.12	
FUIO	4.00	2.07	6.07	A	2	2				255	19	26.7	49.0		-						
FHIS	4 00	2.07	6.07	Â	6					271	19	19.0	49.0								
FHJS	4.00	2.07	6.07	A	Ť	2			1	285	14	17.3	67.7			8	2	5			
FHJ8	4.00	2.07	6.07	A	8					290	HIT										
FHJS	4.00	2.07	6.07	A	Median A						23		40.0								
FHJS	4.00	2.07	6.07	A	W Mean A S1-end						46.9		18.8	1		-					
FHJ8	4.00	2.07	6.07	A	W Mean A S2-end						26.5		34.4								
FLUO	4.00	2.07	6.07	A	W Mean A 1-end	N					22.1		91.0								
FHIS	4.00	2.07	6.07	Â	Mean A 3-7	-			-		23.0		40.0	1			-	-		-	
FHUS	4 00	2.07	6.07	A	Mean A 4-8						21.2		43.6	8		3					
FHJ8	4.00	2.07	6.07	A	Mean A						22.3		42.4	0						7.79	
FHJS	4.00	2.07	6.07	A	CoeVar A					101/152	17.8%		17.9%	1						0.04	
FHJ8	4.00	2.07	6.07	В	Initial	(14	in the second			1				1			
FHJS	4.00	2.07	6.07	B	SI	2.8	0.089	29	436.1	110	96		8.8								
FHJS	4.00	2.07	6.07	B	\$2	3.3	0.105	271	53.7	153	43	67.0	20.6							0.07	
FHIS	4.00	2.07	6.07	B	2	3.4	0.108	203	27.1	165	34	37.0	20.2							8.07	
FHIS	4.00	2.07	6.07	B		3.4	0.108	230	59.1	209	24	25.7	30.2							7.59	
FHJ8	4.00	2.07	6.07	B	4	5.4	0.172	455	52.4	249	19	21.3	49.0								
FHJ8	4.00	2.07	6.07	B	5	5.5	0.175	427	56.8	266	17	19.0	55.1								
FHJ8	4.00	2.07	6.07	В	6	5.5	0.175	414	58.6	283	17	17.7	55.1								
FHJ8	4.00	2.07	6.07	В	7	8	0.255	622	56.8	295	HIT										
FHJ8	4.00	2.07	6.07	В	8	8.1	0.258	597	59.9												
FHJ8	4.00	2.07	6.07	B	9	8.2	0.261	597	60.6												
FHJ8	4 00	2.07	6.07	В	Mean H1	3.40	0.108	258.33	58.10											i	
FUIS	4.00	2.07	6.07	D D	Mean H2	2.47	0.179	434.00	22.92						<u> </u>						
FHIS	4 00	2.07	6.07	B	CoeVar H1	0.0%	0.0%	1.7%	1.7%												
FHJ8	4.00	2.07	6.07	B	CoeVar H2	1.1%	1.1%	4.9%	5.8%												
FHJS	4.00	2.07	6.07	B	CoeVar H3	1.2%	1.2%	2.4%	3.5%												
FHJ8	4.00	2.07	6.07	В	Median B						22.5		40.9								
FHJ8	4.00	2.07	6.07	В	W Mean B S1-end						52.2		16.7								
FHJ8	4.00	2.07	6.07	В	W Mean B S2-end						27.9		32.6							i	
FHJ8	4.00	2.07	6.07	B	W Mean B 1-end						22.9		40.1								
FILIS	4 00	2.07	6.07	B B	Mean B 3-7						23.6		38.5								
FHIS	4.00	2.07	6.07	R	Mean B 4-8						19.6		47.4								
FHJ8	4.00	2.07	6.07	В	Mean B						21.7		44.9							7.75	
FHJ8	4.00	2.07	6.07	В	CoeVar B						26.4%		23.4%							3.6%	
FHJ8	4.00	2.07	6.07	C	Instial					20						1					
FHJ8	4.00	2.07	6.07	C	S1					110	90		9.4								
FHJ8	4.00	2.07	0.07	C C	SZ					152	42	(4.2	21.1							0.17	_
FUIS	9.00	2.07	6.07	C	2					202	34	34.7	28.2							8.10	
FH12	4.00	2.07	6.07	č	3					200	24	25.3	30.2				<u> </u>			2.04	_
FHI8	4.00	2.07	6.07	č	4					247	19	21.0	49.0							0.01	
FHJ8	4.00	2.07	6.07	Č	5					264	17	18.7	55.1								
FHJ8	4.00	2.07	6.07	С	6					279	15	17.0	62.9								
FHJ8	4.00	2.07	6.07	C	7					294	HIT										
FHJ8	4.00	2.07	6.07	С	8																
FHJ8	4.00	2.07	6.07	C	Median C						22		41.9								
FHJ8	4.00	2.07	6.07	C	W Mean C S1-end						49.2		17.8								
FH18	4.00	2.07	6.07	0	W Mean C Lond						27.9		40.7								
FH18	4.00	2.07	6.07	C	W Mean C 3-7						22.0		38.8								
FHIS	4.00	2.07	6.07	c	Mean C 3-7						22.4		41.1								
FHJ8	4.00	2.07	6.07	č	Mean C 4-8						19.0		49.0								
FHJ8	4.00	2.07	6.07	С	Mean C						21.2		46.6							8.08	
FHJ8	4.00	2.07	6.07	С	CoeVar C						28.9%		26.4%							0.9%	
FHJ8	4.00	2.07	6.07	D	1									1763.9	1788.9		1753.4	102.0%	100.6%	7.62	
FHJ8	4.00	2.07	6.07	E	1									1763.9		1714.6	1753.4	97.8%	100.6%	7.43	
FHJ8	4.00	2.07	6.07	D	2									1763.9	1759.4	10776 4	1753.4	100.3%	100.6%	7.33	
FHJ8	4.00	2.07	6.07	E DE	Z Mare DE									1763.9	1774.2	1875.4	1753.4	107.0%	100.6%	7.33	2.76
FH18	4.00	2.07	6.07	DE	CoeVar DE									1705.9	1.774.2	6.3%	1755.4	3.8%		1.8%	7.70

Sample ID	4	Gradatio	n		Location		-	LWD			D	CP					Density			Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	F	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
						[kN]	[MPa]	[mm]	[MPa]	[mm]	[mm/blow]	[mm blow]	[MPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%]	[%]
FHJ8X1.125	4.00	2.07	6.07	A	Instal	- m - Chin -	1 - C - C - C	2 00		175		- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		11127-1221			10000-00-1			0.000	2010
FH18X1 125	4.00	2.07	6.07	A	51					200	40		22.2	-							_
FHJ8X1 125	4 00	2.07	6.07	Ä	1 I				1	323	27	49.3	33.7	1						7.57	
FHJ8X1.125	4.00	2.07	6.07	A	2					346	23	30.0	40.0	(-	7.32	
FHJ8X1 125	4 00	2.07	6.07	A	3					366	20	23.3	46.4				-			7.53	_
FH18X1 125	4.00	2.07	6.07	A	3		-		-	400	16	18.0	58.8				-				
FHJ8X1.125	4.00	2.07	6.07	A	6					414	14	16.0	67.7		1						-
FHJ8X1 125	4 00	2.87	6.07	A	7		-		1	427	13	14.3	73.3			1	2	5			_
FHJ8X1.125 FHJ8X1.125	4.00	2.07	6.07	A	8		-		-	440	13	13.3	73.3	2							
FHJ8X1.125	4.00	2.07	6.07	Â	10					461	10	11.3	96.8								
FHJ8X1 125	4.00	2.07	6.07	A	Median A				1		17	11/20/27	55.1								
FHJ8X1.125	4.00	2.07	6.07	A	W Mean A S1-end	1 <u> </u>			<u> </u>		39.0		22.8				-			-	
FHJ8X1 125	4 00	2.07	6.07	Â	W Mean A 1-end						18.1		51.4								
FHJ8X1 125	4.00	2.87	6.07	A	W Mean A 3-7						21.5		42.9								
FHJ8X1.125	4.00	2.07	6.07	A	Mean A 3-7						20.8		44.5	-							
FH18X1 125	4 00	2.07	6.07	~	Mean A 4-8 Mean & 8-12					-	18.2		78.4								
FHJ8X1 125	4.00	2.07	6.07	Â	Mean A						16.5		62.9	1						7.47	
FHJ8X1.125	4.00	2.07	6.07	A	CoeVar A						33.2%		32.6%							0.02	
FHJ8X1 125	4 00	2.07	6.07	B	Initial	3.2	0.102	1444	0.8	171	81		10.5			1		-		1	_
FHJ8X1.125	4.00	2.07	6.07	B	\$2 \$2	3.4	0.102	430	34.9	291	39		22.8								
FHJ8X1.125	4.00	2.07	6.07	B	1	3.4	0.108	367	40.9	316	25	48.3	36.6							7.40	
FHJ8X1.125	4.00	2.07	6.07	B	2	3.5	0.111	342	45.2	338	22	28.7	41.9							7 62	
FHJ8X1 125	4.00	2.07	6.07	B	4	5.5	0.181	630	40.0	376	17	20.0	55.1							7.95	
FHJ8X1.125	4.00	2.07	6.07	B	5	5.7	0.181	539	46.7	391	15	17.7	62.9								
FHJ8X1.125	4.00	2.07	6.07	B	6	5.8	0.185	504	50.8	406	15	15.7	62.9								
FHJ8X1.125	4.00	2.07	6.07	B	7	8.1	0.258	758	47.2	418	12	14.0	79.8								
FHJ8X1.125	4.00	2.07	6.07	B	9	8.1	0.258	624	57.3	441	11	11.7	87.5								
FHJ8X1.125	4.00	2.07	6.07	B	Mean H1	3.47	0.110	346.33	44.29	452	11	11.3	87.5								
FHJ8X1.125	4.00	2.07	6.07	B	Mean H2	5.73	0.182	557.67	45.80	463	11	11.0	87.5								
FHJ8X1.125 FHJ8X1.125	4 00	2.07	6.07	B	CoeVar H1	1.7%	1.259	5 5%	6.9%	409	ни					-					
FHJ8X1.125	4.00	2.07	6.07	B	CoeVar H2	1.0%	1.0%	11.7%	12.0%												
FHJ8X1.125	4.00	2.07	6.07	B	CoeVar H3	0.7%	0.7%	10.1%	9.9%												
FHJ8X1.125	4 00	2.07	6.07	B	Median B W Mean B S1 and						15		62.9								
FHJ8X1.125	4.00	2.07	6.07	B	W Mean B S2-end			<u> </u>			21.1		43.7								
FHJ8X1.125	4.00	2.07	6.07	B	W Mean B 1-end						17.1		54.8								
FHJ8X1.125	4 00	2.07	6.07	B	W Mean B 3-7						20.6		44.9								
FHJ8X1.125 FHJ8X1.125	4.00	2.07	6.07	B	Mean B 3-7 Mean B 4-8						20.0		40.4								
FHJ8X1.125	4.00	2.07	6.07	B	Mean B 8-12						11.4		84.2								
FHJ8X1.125	4.00	2.07	6.07	В	Mean B						16.7		61.2							7.65	
FHJ8X1.125	4.00	2.07	6.07	B	CoeVar B					174	30.0%		32.0%							3.5%	
FHJ8X1.125	4.00	2.07	6.07	č	S1					252	78		10.9			1					
FHJ8X1.125	4.00	2.07	6.07	C	S2					289	37		24.1								
FHJ8X1.125	4.00	2.07	6.07	<u> </u>	1					313	24	46.3	38.2				<u> </u>			7.25	
FHJ8X1.125	4.00	2.07	6.07	č	3					353	19	21.3	49.0							7.49	
FHJ8X1.125	4.00	2.07	6.07	Ċ	4					371	18	19.3	51.9								
FHJ8X1.125	4.00	2.07	6.07	C	5					388	17	18.0	55.1								
FH18X1.125	4.00	2.07	6.07	C	0					402	14	10.5	67.7								
FHJ8X1.125	4.00	2.07	6.07	č	8					429	13	13.7	73.3								
FHJ8X1.125	4.00	2.07	6.07	C	9					440	11	12.7	87.5								
FHJ8X1.125	4.00	2.07	6.07	C	10					451	11	11.7	87.5								
FHJ8X1.125	4.00	2.07	6.07	č	Median C					402	17	11.0	55.1								
FHJ8X1.125	4.00	2.07	6.07	Ĉ	W Mean C S1-end						36.0		24.8								
FHJ8X1.125	4.00	2.07	6.07	C	W Mean C S2-end						20.4		45.4								
FH18X1 125	4.00	2.07	6.07	C	W Mean C 1-end W Mean C 3-7						20.1		461								
FHJ8X1.125	4.00	2.07	6.07	č	Mean C 3-7						19.8		46.9								
FHJ8X1.125	4.00	2.07	6.07	C	Mean C 4-8						17.8		52.5								
FHJ8X1 125	4.00	2.07	6.07	C	Mean C 8-12						12.6		75.7							7.30	
FHJ8X1.125	4.00	2.07	6.07	c	CoeVar C						28.0%		28.1%							1.6%	
FHJ8X1.125	4.00	2.07	6.07	D	1									1819.8	1776.2		1753.4	101.3%	103.8%	7.64	
FHJ8X1.125	4.00	2.07	6.07	E	1									1819.8	1010.0	1841.8	1753.4	105.0%	103.8%	7.26	
FHJ8X1.125 FH18X1.125	4.00	2.07	6.07	D E	2									1819.8	1810.0	1291.5	1753.4	103.2%	103.8%	7.85	
FHJ8X1.125	4.00	2.07	6.07	DE	Mean DE									1819.8	1793.1	1866.7	1753.4	104.4%	103.076	7.55	7.51
EH18¥1 125	4.00	2.07	6.07	DE	CoeVer DE										1 384	1.9%		2.7%		2.49/	

Sample ID	0	Grad	ation			Location		. 1	LWD			D	CP					Density			Moisture (Content
Sample	CGN	I FO	IN C	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
100000000		1 100	222			#	IkN1	IMPal	limini	IMPal	Imml	Imm/blowi	Imm blowl	IMPal	Ikg/m31	lkg/m31	[kg/m3]	lkg/m31	1%]	1%1	1%1	12/61
FHJ8X4/3	4.00	21	07 6	5.07	A	Initial	in the second			-	61								1.	14 H		
FHJ8X4/3	4.00	21	07 (б.U7	A	S1	1				143	82		10.4								
FHJ8X4/3	4.00	2.1	07 (5.07	A	S2					181	38		23.5								
FHJ8X4/3	4 00	21	07 (5 07	A	1	1	1			208	27	49.0	33.7	3		1				7.88	
FHJ8X4/3	4.00	2	07 (5.07	A	2	1	-		1	231	23	29.3	40.0	3		1				8.09	
FHJ8X4/3	4 00	2	17 (0.07	A	3					250	19	23.0	49.0			-				7.68	
FHISVA/3	4.00	4		5.07	A	4					208	10	12.7	51.9	-		2					
FHI8X4/3	4 00	2	07 0	5.07	A	6					298	14	16.0	67.7				-				
FHJ8X4/3	4.00	2	07 6	5.07	A	7	1			-	311	13	14.3	73.3	1							
FHJ8X4/3	4.00	2	07 0	5.07	A	8					325	14	13.7	67.7								
FHJ8X4/3	4.00	2.	07 0	5.07	A	Median A	() () () () () () () () () ()				-	18.5		50.4	1		6	(B) (
FHJ8X4/3	4.00	21	07 (5.07	A	W Mean A SI-end		-				41,4		21.4							i	
FHJ8X4/3	4.00	Z.	07 0	5.07	A	W Mean A S2-end	1					23.1		39.8	1						r	
FILICA4/2	4.00	2	07 0	07	A	W Mean A 1-eng						17.4		40.2								
FHI8X4/3	4.00	2	07 0	5.07	<u>^</u>	Mean A 3.7	1					20.6		44.9	-			-				
FHJ8X4/3	4.00	2	07 0	5.07	A	Mean A 4-8	5					18.0		51.9			15				(
FHJ8X4/3	4.00	21	07 (5.07	A	Mean A						18.0		55.3							7.88	
FHJ8X4/3	4.00	2	07 (5.07	A	CoeVar A						27.2%		25.6%							0.03	
FHJ8X4/3	4 00	2	07 1	5.07	B	Initial					56					-	16					
FHJ8X4/3	4.00	2	07 0	5.07	B	S1	3.5	0.111	1266	12.2	145	89		9.5			-	-				
FH1874/3	4.00	2	07	5.07	B B	32	3.6	0.115	333	49.6	210	27	51.3	23.7	· ·		1.				7.00	
FH18X4/3	4.00	2	17 1	5.07	B	2	3.6	0.115	294	54.8	230	20	28.3	46.4		<u> </u>					8.06	
FHJ8X4/3	4.00	2.	07 0	5.07	B	3	3.6	0.115	295	53.9	250	20	22.3	46.4							8.02	
FHJ8X4/3	4.00	2	07 (5.07	В	4	5.7	0.181	540	46.6	266	16	18.7	58.8								
FHJ8X4/3	4.00	2.	07 (5.07	В	5	5.8	0.185	468	54.7	281	15	17.0	62.9								
FHJ8X4/3	4 00	2	07 (5.07	В	6	5.9	0.188	441	59.0	296	15	15.3	62.9								
FHJ8X4/3	4.00	2.		0.07	B	7	8.2	0.261	05/	50.8	309	13	14.3	73.3								
FUI9VA/3	4 00	2	07 0	07	B	ă Q	8.5	0.271	640	60.3	320	10	13.0	87.5								
FH18X4/3	4.00	2		5.07	B	Mean H1	3.60	0.274	303.00	52.51	550	10	11.5	20.0								
FHJ8X4/3	4.00	2	07 0	5.07	B	Mean H2	5.80	0.185	483.00	53.44												
FHJ8X4/3	4.00	2.	07 (5.07	В	Mean H3	8.43	0.268	586.33	63.81												
FHJ8X4/3	4.00	2.	07 (5.07	В	CoeVar H1	0.0%	0.0%	4.9%	4.7%												
FHJ8X4/3	4.00	2.	07 (5.07	В	CoeVar H2	1.7%	1.7%	10.6%	11.8%												
FHJ8X4/3	4.00	2.	07 (5.07	B	CoeVar H3	2.5%	2.5%	7.8%	10.0%				10.0								
FHJ8X4/3	4.00	2.	07 0	0.07	B	Median B W Maan D SL and						43.0		20.2							└─── ┦	
FH18X4/3	4.00	2.	07 0	5.07	B	W Mean B S2-end						22.0		41.9							t	
FHJ8X4/3	4.00	2	07 0	5.07	B	W Mean B 1-end		<u> </u>				17.9		52.3								
FHJ8X4/3	4.00	2.	07 0	5.07	B	W Mean B 3-7						20.5		45.2								
FHJ8X4/3	4.00	2	07 (5.07	В	Mean B 3-7						19.6		47.4								
FHJ8X4/3	4.00	2.	07 (5.07	B	Mean B 4-8						17.2		54.4								
FHJ8X4/3	4 00	2	07 07	5.07	B	Mean B						16.3		63.2							8.02	
FHJ8X4/3	4.00	2.	07 0	0.07	B	Coevar B					66	32.4%		32.0%							0.4%	
FH1884/3	4 00	2	17 7	5.07	č	S1		-			137	82		10.4								
FHJ8X4/3	4.00	2	07 0	607	č	S2					174	37		24.1								
FHJ8X4/3	4.00	2.	07 6	5.07	с	1					200	26	48.3	35.1							8.00	
FHJ8X4/3	4 00	2	07 (5.07	C	2					220	20	27.7	46.4							7.92	
FHJ8X4/3	4.00	2.	07 0	5.07	C C	3					239	19	21.7	49.0							8.05	
PPIJ824/3	4 00	2	07 0	5.07	<u> </u>	9					200	17	18.7	52.0								
FH1274/3	4.00	2.	07 0	5.07	č	6					225	14	15.3	677								
FHJ8X4/3	4.00	2	07 0	5.07	č	7					298	13	14.0	73.3								
FHJ8X4/3	4.00	2	07 (5.07	C	8					310	12	13.0	79.8								
FHJ8X4/3	4.00	2.	07 (5.07	C	9					321	11	12.0	87.5								
FHJ8X4/3	4.00	2	07 (5.07	C	10					330	9	10.7	108.3								
FHJ8X4/3	4.00	2.	07 0	5.07	C	11 Mafaa 0					336	HIT		60.0								
FUISX4/3	4.00	2.	07 0	5.07	C	William C SL and						30.1		33.80							ŧ	
FH18X4/3	4.00	2		5.07	č	W Mean C S2-end						20.9		44.3								
FHJ8X4/3	4.00	2	07 0	5.07	Č	W Mean C 1-end						17.1		54.9								
FHJ8X4/3	4.00	2.	07 0	5.07	ĉ	W Mean C 3-7						20.1		46.1								
FHJ8X4/3	4.00	2.	07 (5.07	С	Mean C 3-7						19.4		47.9								
FHJ8X4/3	4.00	2.	07 6	5.07	c	Mean C 4-8						17.0		55.1								
FHJ8X4/3	4.00	2.	07 0	0.07	C	Mean C 8-12						11.8		81.2							7.00	
FLUISX4/3	4.00	2.	07 0	0.07	C	Mean C						15.0		32.7%							7.99	
FH18X4/3	4 00	2	07	5.07	D	Gue yar G						577.51		677.31	1945 3	1810.2		1753.4	103.2%	110.9%	7.66	
FHJ8X4/3	4.00	2	07 0	5.07	E	1									1945.3	1010.2	1867.8	1753.4	106.5%	110.9%	8.14	
FHJ8X4/3	4.00	2.	07 0	5.07	D	2									1945.3	1891.1		1753.4	107.9%	110.9%	8.02	
FHJ8X4/3	4.00	2	07 (5.07	E	2									1945.3		1876.9	1753.4	107.0%	110.9%	8.08	
FHJ8X4/3	4.00	2.	07 (5.07	DE	Mean DE									1945.3	1850.7	1872.3	1753.4	106.2%		7.97	7.97
FHJ8X4/3	4 00	2	07 (5.07	DE	CoeVar DE										3.1%	0.3%	1	1.9%		2.7%	

Sample ID	4	Gradatio	m		Location			LWD			D	CP			0	10	Density	5		Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
					#	[kN]	[MPa]	[mm]	[MPa]	[mm]	[mm blow]	[mm blow]	[MIPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%+]	[%]
FHJ8X2	4.00	2.07	6.07	A	Instal	1 m (Citri		4 00 1		69	-			, true strong		100000	1000e e (0.000	
FHJ8X2	4 00	2.07	6.07	A	S1 52					131	02		24.8								
FHJ8X2	4.00	2.87	6.07	Å	1	2			1	189	22	40.0	41.9	1		1				7.86	
FHJ8X2	4.00	2.07	6.07	A	2				1	208	19	25.7	49.0	ł	1					7.85	
FHJ8X2	4.00	2.07	6.07	A	3					225	17	19.3	55.1							8.20	
FHISK2	4.00	2.07	6.07	A	3				1	242	16	16.7	52.1 52.2				-			1	
FHJ8X2	4.00	2.07	6.07	A	6					273	15	16.0	62.9								
FHJ8X2	4.00	2.07	6.07	A	7					288	15	15.3	62.9	()		Q	S				
FHJ8X2	4.00	2.07	6.07	A	8					300	12	14.0	79.8								
FHJ8X2	4.00	2.07	6.07	A	10					321	10	11.0	96.8								
FHJ8X2	4 00	2.07	6.07	A	11	8			-	330	HIT			8						S	
FHJ8X2	4.00	2.07	6.07	A	Median A	3	1		1 8		16.5		56.9	3		19	. S	2	1	19	
FHJ8X2	4.00	2 07	6.07	<u>^</u>	W Mean A S1-end						30.3		29.8	-							
FH12X2	4.00	2.07	6.07	A	W Mean A 52-end						19.9		40.2 58.0	2 C	-						
FHJ8X2	4.00	2.07	6.07	Å	W Mean A 3-7						18.5		50.5								
FHJ8X2	4.00	2.87	6.07	A	Mean A 3-7)	-				18.2		51.3	1. 7		1	1				
FHJ8X2	4.00	2.07	6.07	A	Mean A 4-8						16.8		55.8								
FH18X2	4.00	2.07	6.07	A	Mean A						12.0		65.0			2	0			7.97	
FHJ8X2	4.00	2.07	6.07	A	CoeVar A						23.9%		27.0%	1		1		2		0.02	
FHJ8X2	4.00	2.07	6.07	B	Initial		1			58				1							
FHJ8X2	4.00	2.07	6.07	B	S1 62	3.5	0.111	142	108.8	143	85		10.0								
FH18X2	4.00	2.07	6.07	B	32	3.6	0.115	229	69.4	208	29	50.0	29.8							8.45	
FHJ8X2	4.00	2.07	6.07	B	2	3.5	0.111	218	70.9	224	16	27.0	58.8			<u> </u>				8.05	
FHJ8X2	4.00	2.07	6.07	В	3	3.6	0.115	206	77.1	243	19	21.3	49.0							8.03	
FHJ8X2	4.00	2.07	6.07	B	4	5.6	0.178	357	69.2	260	17	17.3	55.1								
FHJ8X2	4.00	2.07	6.07	B	2	5.5	0.175	353	68.8	275	15	17.0	62.9		<u> </u>						
FHJ8X2	4.00	2.07	6.07	B	7	8.4	0.172	468	79.2	301	12	13.7	79.8		<u> </u>						
FHJ8X2	4.00	2.07	6.07	B	8	8.3	0.264	462	79.3	314	13	13.0	73.3								
FHJ8X2	4.00	2.07	6.07	B	9	8.3	0.264	442	82.9	325	11	12.0	87.5								
FHJ8X2	4.00	2.07	6.07	B	10	0.67	0.114	017.47	70.46	334	HIT				<u> </u>	<u> </u>					
FH1872	4.00	2.07	6.07	B	Mean H1 Mean H2	5.57	0.114	217.07	69.25												
FHJ8X2	4.00	2.07	6.07	B	Mean H3	8.33	0.265	457.33	80.46												
FHJ8X2	4.00	2.07	6.07	B	CoeVar H1	1.6%	1.6%	5.3%	5.7%												
FHJ8X2	4.00	2.07	6.07	B	CoeVar H2	1.0%	1.0%	1.3%	0.7%						L	<u> </u>					
FHJ8X2 FH18Y2	4 00	2.07	6.07	B	Coevar H3 Median B	U. 7%	0.7%	3.0%	2.0%		16		58.8								
FHJ8X2	4.00	2.07	6.07	B	W Mean B S1-end						41.7		21.3								
FHJ8X2	4.00	2.07	6.07	B	W Mean B S2-end						21.4		43.1								
FHJ8X2	4.00	2.07	6.07	B	W Mean B I end						17.8		52.4								
FHJ8X2	4.00	2.07	6.07	B	W Mean B 3-7 Mann B 3-7						20.5		45.1								
FHJ8X2	4.00	2.07	6.07	B	Mean B 4-8						16.2		58.0								
FHJ8X2	4.00	2.07	6.07	B	Mean B						14.6		66.8							8.18	
FHJ8X2	4.00	2.07	6.07	B	CoeVar B						36.9%		25.4%							2.9%	
FHJ8X2	4 00	2.07	6.07	C	Instal					59	80		10.6			}	-				
FHJ8X2	4.00	2.07	6.07	č	82					174	35		25.6			<u> </u>					
FHJ8X2	4.00	2.07	6.07	c	1					199	25	46.7	36.6							8.26	
FHJ8X2	4.00	2.07	6.07	C	2					218	19	26.3	49.0							7.86	
FHJ8X2	4.00	2.07	6.07	C C	3					236	18	20.7	51.9			<u> </u>				8.00	
FHJ8X2	4.00	2.07	6.07	c	5					266	15	16.0	62.9								
FHJ8X2	4.00	2.07	6.07	C	6					279	13	14.3	73.3								
FHJ8X2	4.00	2.07	6.07	С	7					291	12	13.3	79.8								
FHJ8X2	4.00	2.07	6.07	C	8					302	11	12.0	87.5								
FH12V2	4.00	2.07	6.07	Č	2					323	10	10.7	96.2			<u> </u>					
FHJ8X2	4.00	2.07	6.07	č	11					332	HIT	10.7	70.0								
FHJ8X2	4.00	2.07	6.07	C	Median C						15		62.9								
FHJ8X2	4.00	2.07	6.07	C	W Mean C SI-end						38.0		23.4								
FHJ8X2	4.00	2.07	6.07	C	W Mean C S2-end						19.8		46.9								
FHJ8X2	4.00	2.07	6.07	c	W Mean C 3-7						10.2		48.6								
FHJ8X2	4.00	2.07	6.07	č	Mean C 3-7						18.4		50.7								
FHJ8X2	4.00	2.07	6.07	C	Mean C 4-8						16.0		58.8								
FHJ8X2	4.00	2.07	6.07	c	Mean C 8-12						11.4		84.2								
FHJ8X2	4.00	2.07	6.07	0	CoeVer C						14.9		28.3%							2 5%	
FHJ8X2	4.00	2.07	6.07	D	1						31.270		60.378	1839.3	1751.48		1753.4	99.9%	104.9%	8.01	
FHJ8X2	4.00	2.07	6.07	E	1									1839.3		1822.2	1753.4	103.9%	104.9%	7.89	
FHJ8X2	4.00	2.07	6.07	D	2									1839.3	1870.60	1000.1	1753.4	106.7%	104.9%	8.27	
FHJ8X2	4.00	2.07	6.07	E	2 Mean D.F.									1839.3	1211.0	1930.4	1753.4	110.1%	104.9%	8.03	2.04
FHJ8X2	4.00	2.07	6.07	DE	CoeVar DE									10.57.5	4.7%	4.1%	1755.4	4.1%		2.0%	0.00

Sample ID	0	Grad	lation		2	Location			LWD			D	CP					Density			Moisture (Content
Sample	CGN	FO	IN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
			1990 - P			#	[kN]	[MPa]	[mm]	[MPa]	[mm]	[mm/blow]	[mm blow]	[MPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%]	[%]
FHJ10	4.00	2.	07	6.07	A	Instal	i in Alle i	1 - C - C - I	2 8 2	- 12 - 12 - 1	166	and the second second	1.0	S Sheep	(1112) 077 (g		1	12.00		25 G.S. (1		2000
FHJ10	4.00	2	07	6.07	A	\$1					244	78		10.9					-			
FHJ10	4.00	2	07	6.07	A	S2					280	36		24.8								
FHJ10	4 00	2	07	6.07	A	1		-			309	29	47.7	31.3	<u>(</u>		10				9.62	
FHIIA	4.00	2	07	6.07	A	1					356	22	25.3	41.9							9.20	
FHJ10	4.00	2	07	6.07	Ä	4					378	22	23.0	41.9					-		. 10	
FHJ10	4 00	2	07	6.07	A	3	1				396	18	20.7	51.9	8		1					
FHJ10	4.00	2	07	6.07	A	6					414	18	19.3	51.9								
FHJ10	4.00	2	07	6.07	A	7		1			430	16	17.3	58.8	-		1	-				
FHJIO	4.00	2	07	6.07	A	Median A					444	22		41.9			-	-				
FHJ10	4.00	2	07	6.07	Å	W Mean A S1-end						40.6		21.9					-			
FHJ10	4.00	2	07	6.07	A	W Mean A S2-end					1	24.9		36.7					2			
FHJ10	4.00	2.	07	6.07	A	W Mean A 1-end				5		22.3		41.4	Q		1	3				
FHJ10	4.00	2	07	6.07	A	W Mean A 3-7	-			-		23.8		38.6		-						
FHJIO	4.00	2	07	6.07	A	Mean A 4-9		-				23.2		39.0			8					
FHJ10	4.00	2	07	6.07	Â	Mean A						21.4		44.9			-				9.53	
FHJ10	4.00	2	07	6.07	A	CoeVar A					1.00000	21.2%		21.6%	3						0.01	
FHJ10	4.00	2	07	6.07	В	Initial	1				169				1 3		1.5					
FHJ10	4.00	3	07	6.07	B	S1 02	3.1	0.099	1396	9.8	250	81		10.5				-				
FHIIO	4.00	2	07	6.07	B	52	3.3	0.105	296	49.2	321	31	50.7	29.1							10.07	
FHJ10	4.00	2	07	6.07	В	2	3.4	0.108	282	53.2	346	25	32.0	36.6							9.44	
FHJ10	4.00	2.	07	6.07	В	3	3.5	0.111	272	56.8	370	24	26.7	38.2							9.44	
FHJ10	4.00	2	07	6.07	В	4	5.6	0.178	569	43.4	391	21	23.3	44.0								
FHJ10	4.00	2.	07	6.07	B	5	5.6	0.178	478	51.7	409	18	21.0	51.9								
FHIIO	4 00	2	07	6.07	B	7	3.7	0.181	680	52.6	442	16	17.0	58.8				-				
FHJ10	4.00	2	07	6.07	B	8	8.1	0.258	604	59.2	455	HIT	17.0	20.0								
FHJ10	4.00	2.	07	6.07	В	9	8.1	0.258	548	65.2												
FHJ10	4.00	2	07	6.07	В	Mean H1	3.40	0.108	283.33	53.07												
FHJ10	4.00	2.	07	6.07	B	Mean H2	5.63	0.179	498.00	50.47						<u> </u>						
FHJ10	4 00	2	07	6.07	B	CoeVer H1	2.0%	2.0%	4 3%	7 2%												
FHJ10	4.00	2	07	6.07	B	CoeVar H2	1.0%	1.0%	12.7%	12.9%						<u> </u>						
FHJ10	4.00	2.	07	6.07	B	CoeVar H3	0.0%	0.0%	10.8%	10.7%												
FHJ10	4.00	2	07	6.07	В	Median B						24		38.2								
FHJ10	4.00	2.	07	6.07	B	W Mean B S1-end		<u> </u>				42.6		20.8		<u> </u>					<u> </u>	
FHJ10 FHJ10	4 00	2	07	6.07	B B	W Mean B S2-end						20.4		40.3								
FHJ10	4.00	2	07	6.07	B	W Mean B 3-7		<u> </u>				24.6		37.2								
FHJ10	4.00	2.	07	6.07	В	Mean B 3-7						23.8		38.6								
FHJ10	4.00	2	07	6.07	В	Mean B 4-8						21.0		44.0								
FHJ10	4.00	2.	07	6.07	B	Mean B						21.7		44.8							9.65	
FHIIO	4 00	2	07	6.07	D C	Loevar B		-			167	24 076		29.276			-	-			3.676	
FHJ10	4.00	2	07	6.07	č	SI					245	78		10.9								
FHJ10	4.00	2.	07	6.07	С	S2					288	43		20.6								
FHJ10	4.00	2.	07	6.87	C	1					317	29	50.0	31.3							9.86	
FHJ10 FHJ10	4.00	2.	07	6.07	C C	2					343	26	32.7	35.1							9.03	
FHIIO	4.00	2	07	6.07	C	4					386	20	20.0	46.4							7.40	
FHJ10	4.00	2	07	6.07	č	5					405	19	20.7	49.0								
FHJ10	4.00	2.	07	6.07	С	6					422	17	18.7	55.1								
FHJ10	4.00	2.	07	6.87	C	7					439	17	17.7	55.1								
FHJ10	4.00	2.	07	6.07	C C	8 Mala 0					453	HIT		40.0		<u> </u>						
FHJ10	4.00	2	07	6.07	C	W Mean C Strend						41.6		40.0								
FHJ10	4.00	2.	07	6.87	č	W Mean C S2-end						27.0		33.8								
FHJ10	4.00	2.	07	6.07	С	W Mean C 1-end						22.4		41.1								
FHJ10	4.00	2.	07	6.07	С	W Mean C 3-7						24.0		38.2								
FHJ10	4.00	2.	07	6.07	C	Mean C 3-7						23.4		39.3								
FHJ10	4.00	2	07	6.07	C	Mean C 4-8						21.0		44.0							9.45	
FHJ10	4.00	2	07	6.07	c	CoeVar C						21.4%		21.1%							4.4%	
FHJ10	4.00	2.	07	6.07	D	1									1790.6	1769.5		1753.4	100.9%	102.1%	9.30	
FHJ10	4.00	2	07	6.87	E	1									1790.6		1870.4	1753.4	106.7%	102.1%	9.15	
FHJ10	4.00	2.	07	6.07	D	2									1790.6	1854.7	10111	1753.4	105.8%	102.1%	9.24	
FHJ10	4.00	2.	07	6.07	E	2 Maan DE									1790.6	1912.1	1866.6	1753.4	106.5%	102.1%	9.35	0.42
FHJ10	4.00	2.	07	6.07	DE	CoeVar DE									1790.0	3 3%	0.1%	1753.4	2.6%		9.20	9.40

Sample ID	()	Grad	lation		2	Location			LWD			D	CP					Density			Moisture (Content
Sample	CGN	FO	IN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
						#	[kN]	[MPa]	[mm]	[MPa]	[mm]	[mm/blow]	[mm blow]	[MPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%]	[%]
FHJ11	4.00	2.	07	6.07	A	Instal	i in alle i	1 - C - C - I	2 8 2	- 12 - 12 - 1	166	Press and	1.1	S. Same	(1112) 077 (g		1	12.00		25 G.S. (1		1997
FHJ11	4.00	2	07	6.07	A	\$1					250	84		10.1					-			
FHJ11	4.00	2	07	6.07	A	\$2					290	40		22.2								
FHJ11	4 00	2	07	6.07	A	1		-			320	30	51.3	30.2	<u>(</u>		10				10.81	
FHIII	4.00	2	07	6.07	A	1					370	20	26.7	38.2							10.50	
FHJ11	4.00	2	07	6.07	Ä	4					390	20	23.3	46.4							10.07	
FHJ11	4 00	2	07	6.07	A	5	1				405	15	19.7	62.9	8		1		1			
FHJ11	4.00	2	07	6.07	A	6					422	17	17.3	55.1								
FHJ11	4 00	2	07	6.07	A	7	1		-	1 A	436	14	15.3	67.7			1	1			2. P.	
FHJII	4.00	2	07	6.07	A	Madino A						24		39.2				-				
FHJ11	4.00	2	07	6.07	Å	W Mean A S1-end						44.1		20.0							-	
FHJ11	4.00	2	07	6.07	A	W Mean A S2-end					1	26.1		34.9								
FHJ11	4.00	2.	07	6.07	A	W Mean A 1-end				5		22.3		41.2	Q		1	3	5		1	
FHJ11	4.00	2	07	6.07	A	W Mean A 3-7				-		24.1		38.0			-					
THUI	4.00	2	07	6.07	A	Mean A 4-9		-				23.0		40.0			8					
FHJ11	4.00	2	07	6.07	Â	Mean A						20.9		47.9			-				10.73	
FHJ11	4.00	2	07	6.07	A	CoeVar A					A LORGE	28.8%		30.1%	3. ×		1	1			0.02	
FHJ11	4.00	2	07	6.07	B	Initial	(165				1 3		1.5		1			
FHJ11	4.00	3	07	6.07	B	S1 (22	3	0.095	1603	8.3	245	80		10.6				-				
FHIII	4.00	2	07	6.07	B	52	3.5	0.111	318	45.7	320	30	51.7	30.2							10.68	
FHJ11	4.00	2	07	6.07	В	2	3.5	0.111	321	48.1	345	25	33.3	36.6							10.74	
FHJ11	4.00	2.	07	6.07	В	3	3.5	0.111	307	50.3	366	21	25.3	44.0							10.74	
FHJ11	4.00	2	07	6.07	В	4	5.6	0.178	577	42.8	388	22	22.7	41.9								
FHJ11	4.00	2.	07	6.07	B	5	5.6	0.178	509	48.6	407	19	20.7	49.0								
FHIII	4.00	2	07	6.07	B	7	2.0	0.255	703	50.2	422	15	16.7	62.9				-				
FHJ11	4.00	2	07	6.07	B	8	8.1	0.258	653	54.7	449	HIT	10.5	04.7								
FHJ11	4.00	2.	07	6.07	В	9	8.1	0.258	620	57.7												
FHJ11	4.00	2	07	6.07	В	Mean H1	3.50	0.111	322.00	48.04												
FHJ11	4.00	2.	07	6.07	B	Mean H2	5.60	0.178	521.67	47.66						<u> </u>						
FHJII	4.00	2	07	6.07	B	CoeVer H1	8.07	0.257	4.8%	39.81												
FHJ11	4.00	2	07	6.07	B	CoeVar H2	0.0%	0.0%	9.6%	9.3%						<u> </u>						
FHJ11	4.00	2.	07	6.07	B	CoeVar H3	0.7%	0.7%	6.3%	6.9%												
FHJ11	4.00	2	07	6.07	В	Median B						22		41.9								
FHJ11	4.00	2.	07	6.07	B	W Mean B S1-end		<u> </u>				43.0		20.6		<u> </u>						
FHJII	4 00	2	07	6.07	B B	W Mean B S2-end						27.5		33.0								
FHJ11	4.00	2	07	6.07	B	W Mean B 3-7		<u> </u>				24.0		38.2								
FHJ11	4.00	2.	07	6.07	B	Mean B 3-7						23.4		39.3								
FHJ11	4.00	2	07	6.07	В	Mean B 4-8						20.4		45.4								
FHJ11	4.00	2.	07	6.07	B	Mean B						21.0		46.8							10.72	
FHUL	4.00	2	07	6.07	B C	Loevar B		-			167	20 076		20.7%			-	-	-		0.3%	
FHJ11	4.00	2	07	6.07	č	SI					236	69		12.5								
FHJ11	4.00	2.	07	6.07	С	S2					280	44		20.1								
FHJ11	4.00	2.	07	6.07	C	1					309	29	47.3	31.3							10.83	
FHJ11 FHJ11	4.00	2.	07	6.07	C C	2					333	24	32.3	38.2							10.66	
FHIII	4.00	2	07	6.07	C	4					372	18	24.7	51.9							10.77	
FHJ11	4.00	2	07	6.07	č	5					391	19	19.3	49.0								
FHJ11	4.00	2.	07	6.07	С	6					406	15	17.3	62.9								
FHJ11	4.00	2.	07	6.07	C	7					421	15	16.3	62.9								
FHJ11	4.00	2.	07	6.07	C C	8 Mala G					435	14	14.7	67.7		<u> </u>						
FHIII	4.00	2	07	6.07	C	W Mean C Strend						36.9		24.2								
FHJ11	4.00	2.	07	6.07	č	W Mean C S2-end						25.8		35.5								
FHJ11	4.00	2.	07	6.07	С	W Mean C 1-end						20.6		45.0								
FHJ11	4.00	2.	07	6.07	С	W Mean C 3-7						22.9		48.2								
FHJ11	4.00	2.	07	6.07	C C	Mean C 3-7						22.2		41.5								
FHIII	4.00	2	07	6.07	C	Mean C 4-8						19.4		47.9							10.75	
FHJ11	4.00	2	07	6.07	č	CoeVar C						26.6%		25.4%							0.8%	
FHJ11	4.00	2.	07	6.07	D	1									1801.9	1752.6		1753.4	100.0%	102.8%	10.49	
FHJ11	4.00	2	07	6.07	E	1									1801.9		1872.4	1753.4	106.8%	102.8%	10.19	
FHJ11	4.00	2.	07	6.07	D	2									1801.9	1894.7	10722.0	1753.4	108.1%	102.8%	10.14	
FHJ11	4.00	2	07	6.07	DE	2 Mean DE									1801.9	1823.7	1873.1	1753.4	105.4%	102.3%	10.05	10.60
FHJ11	4.00	2	07	6.07	DE	CoeVar DE									1001.5	5.5%	0.1%	1105.4	3.5%		1.9%	10.00

Sample ID		Gradatio	11	2 S	Location			LWD			D	CP	1.5				Density			Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
an warden soone				1.05101.021000	#	[kN]	[MPa]	[mm]	[MPa]	[mm]	[mm blow]	[mm blow]	[MPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%]	[%]
FHJ11X.5	4.00	2.07	6.07	A	Instal	1 - 10 - Can - 1	19 S.	22.000		177		a		in terration from the	1. 221. 221		12.202	100 M	55 U.	10000	1000
FHII1X 5	4.00	2.07	6.07	A	\$1					264	87		97								
FHJ11X.5	4.00	2.07	6.07	A	S2					310	46	20.5	19.2							11.10	
FHJIIXS	4 00	2.07	6.07	A	1		-			352	42	58.3	211			1				11.49	
FULLYS	4.00	2.07	6.07	A	2					410	26	33.3	35.1			-				10.40	
FHJ11X.5	4.00	2.07	607	Ä	4					433	23	27.0	40.0							10.12	
FHJ11X 5	4 00	2.07	6.07	A	5	2 C				454	21	23.3	44.0	1 () () () () () () () () () (
FHJ11X.5	4.00	2.07	6.07	A	6					463	HIT										
FHJ11X.5	4 00	2.07	6.07	A	7	/			1	-			-			1	-				
FHUIXS	4.00	2.07	6.07	A	Madian A						32		20.2	-			-				
FHUIXS	4.00	2.07	6.07	Â	W Mean A S1-end						51.0		17.2								
FHJ11X.5	4.00	2.07	6.07	A	W Mean A S2-end					1	34.5		26.0					1			
FHJ11X.5	4.00	2.07	6.07	A	W Mean A 1-end						30.8		29.3	1		0	5				
FHJ11X.5	4.00	2.07	6.07	A	W Mean A 3-7						30.8		29.3		-					<u> </u>	_
FHJILXS	4.00	2.07	6.07	<u>A</u>	Mean A 3-7		-				28.8		31.5			0	-				_
FHILLYS	4.00	2.07	6.07	A	Mean A						28.8		33.7				-			10.89	
FHJ11X.5	4.00	2.07	6.07	A	CoeVar A						29.4%		27.3%	5		1	1			0.05	
FHJ11X.5	4.00	2.07	6.07	В	Initial	()				178			1	1		1					
FHJ11X.5	4.00	2.07	6.07	B	SI	overload	0.100	004		268	90		9.4								
FHULXS	4.00	2.07	6.07	B	52	3.4	0.108	541	21.3	317	49	59.7	22.2							11.62	
FHJ11X.5	4.00	2.07	6.07	B	2	3.4	0.108	493	30.4	390	33	40.7	27.3		<u> </u>	<u> </u>				11.68	
FHJ11X.5	4.00	2.07	6.07	B	3	3.4	0.108	451	33.3	417	27	33.3	33.7							12.86	
FHJ11X 5	4.00	2.07	6.07	В	4	5.6	0.178	789	31.3	444	27	29.0	33.7								
FHJ11X.5	4.00	2.07	6.07	B	5	5.7	0.181	685	36.7	462	HIT				<u> </u>						
FHULLYS	4.00	2.07	6.07	B	0	5.7	0.181	802	39.0	-											
FHJ11X.5	4.00	2.07	6.07	B	8	8.1	0.258	806	44.4												
FHJ11X.5	4.00	2.07	6.07	В	9	8.1	0.258	761	47.0												
FHJ11X.5	4.00	2.07	6.07	В	Mean H1	3.40	0.108	495.00	30.48												
FHJ11X.5	4.00	2.07	6.07	B	Mean H2	5.67	0.180	703.00	35.89						<u> </u>	<u> </u>					
FHUIRS	4 00	2.07	6.07	B	CoeVer H1	0.13	0.239	9.1%	9.5.90		-										
FHJ11X S	4.00	2.07	6.07	B	CoeVar H2	1.0%	1.0%	11.2%	11.7%						<u> </u>						
FHJ11X.5	4.00	2.07	6.07	B	CoeVar H3	0.7%	0.7%	8.1%	7.3%												
FHJ11X.5	4.00	2.07	6.07	В	Median B						36.5		24.5								
FHJ11X.5	4.00	2.07	6.07	B	W Mean B S1-end		<u> </u>				55.1		15.8		<u> </u>					i /	
FHULLYS	4 00	2.07	6.07	B	W Mean B S2-end						37.2		29.0							L 1	
FHJ11X 5	4.00	2.07	6.07	B	W Mean B 3-7						32.7		27.6		<u> </u>						
FHJ11X.5	4.00	2.07	6.07	В	Mean B 3-7						31.8		28.4								
FHJ11X 5	4.00	2.07	6.07	В	Mean B 4-8						29.0		31.3								
FHJ11X.5	4.00	2.07	6.07	B	Mean B		<u> </u>				31.8		29.2			<u> </u>				12.06	
FHUIXS	4.00	2.07	6.07	C B	Loevar B				-	180	19.5%		19.176		-			-		0.020	
FHJUX.5	4.00	2.07	6.07	č	SI					267	87		9.7								
FHJ11X.5	4.00	2.07	6.07	С	S2					318	51		17.2								
FHJ11X.5	4.00	2.07	6.07	C	1					358	40	59.3	22.2							11.54	
FHJ11X.5	4.00	2.07	6.07	C C	2					390	32	41.0	28.2							11.24	
FHULXS	4.00	2.07	6.07	c	4					417	27	27.3	40.0							11.95	
FHJ11X.5	4.00	2.07	6.07	C	5					462	HIT										
FHJ11X.5	4.00	2.07	6.07	С	6																
FHJ11X.5	4.00	2.07	6.07	C	7																
FHJ11X.5	4.00	2.07	6.07	C C	8 Medice C						26		24.9								
FHULTES	4.00	2.07	6.07	c	W Mean C Strend						54.0		16.1								
FHJ11X.5	4.00	2.07	6.07	č	W Mean C S2-end						37.5		23.8								
FHJ11X.5	4.00	2.07	6.07	С	W Mean C 1-end						31.8		28.3								
FHJ11X.5	4.00	2.07	6.07	C	W Mean C 3-7						31.8		28.3								
FHJ11X.5	4.00	2.07	6.07	C C	Mean C 3-7						30.5		29.6								
FHUIXS	4.00	2.07	6.07	C	Mean C 4-8						27.3		33.3							11.57	
FHJ11X.5	4.00	2.07	6.07	č	CoeVar C						24.0%		24.5%							3.0%	
FHJ11X.5	4.00	2.07	6.07	D	1									1772.5	1782.0		1753.4	101.6%	101.1%	10.58	
FHJ11X.5	4.00	2.07	6.07	E	1									1772.5		1792.3	1753.4	102.2%	101.1%	11.19	
FHJ11X.5	4.00	2.07	6.07	D	2									1772.5	1801.0	10072.6	1753.4	102.7%	101.1%	11.23	
FHUITXS	4.00	2.07	6.07	DF	Z Mean DE									1772.5	1701.5	1857.6	1753.4	103.9%	101.1%	11.05	11.32
FHJ11X S	4.00	2.07	6.07	DE	CoeVar DE									1772.3	0.7%	2.5%	1105.4	1.9%		2.7%	11.55

Sample ID	Gradation		Location Section Trial		- 1	LWD			D	CP					Density		/1	Moisture	Content
Sample	CGN FGN GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
and the second second		1 00101220000	-	IENI	IMPal	Imml	IMPal	Imml	fram blowl	Imm blowl	IMPal	Bra/m31	Beerin 31	(kain3)	Broins31	12/41	19/41	19/41	12/41
FH113	400 207 607	A	Instal	- Ince - I	[cost of	friend	prose mg	188	Tunn or out	[man oron]	(area of	CONTRACTOR OF CONTRACTOR	Tere were l	[ng m.)	[res mer]		100 M	1.41	1.4
FHJ13	4.00 2.07 6.07	A	\$1					318	130		6.4								
FHJ13	4.00 2.07 6.07	A	S2					400	82		10.4								
FHJ13	4 00 2 07 6 07	A	1	2			1	447	HIT			3						13.35	
FHJ13	4.00 2.07 6.07	A	2	1 · · · · · · · · · · · · · · · · · · ·	1		i		1.000			1		15	1			13.21	
FHJ13	4.00 2.07 6.07	A	3															13.56	
FHJ13	4.00 2.07 6.07	A	4	1									-		-				
FHJ15	400 207 607	Å	2						-			-							
FHUIS	4.00 2.07 6.07	A .	7								0	-							
FH113	400 207 607	Â	8	1				-											
FHJ13	4 00 2 07 6 07	A	Median A								-	-			-				
FHJ13	4.00 2.07 6.07	A	Mean A				2		1		() ()	0		2	1			13.37	
FHJ13	4.00 2.07 6.07	A	CoeVar A								50					(internet)		0.01	_
FHJ13	4.00 2.07 6.07	B	Initial	1			1	174			0	1		12					
FHJ13	4.00 2.07 6.07	B	SI	overload	-	na	•	295	121		6.9								
FHJIS	4.00 2.07 6.07	B	52	overioad	0.040	118		373	18	04.0	10.9	2		1	-			12.64	
FHJ12	4.00 2.07 0.07	P	2	1.2	0.000	2122	2.0	440	HIT	04.0	10.2				-			13.24	
FHJ13	4 00 207 607	B	3	3.5	0.111	2043	7.6	457			1							12.62	
FHJ13	4.00 2.07 6.07	B	4	overload		na													
FHJ13	4.00 2.07 6.07	B	5	overload		na													
FHJ13	4.00 2.07 6.07	В	6	3.6	0.115	2128	7.5												
FHJ13	4.00 2.07 6.07	B	7	7.8	0.248	2128	16.2												
FHJ13	4 00 2 07 6 07	В	8	7.8	0.248	2054	16.8	-	-										(
FHJ13 FHJ12	4.00 2.07 6.07	B	9	8	0.255	2028	17.4												
FHU13	4.00 2.07 6.07	B	Mean H2	3.60	0.115	2140.00	7.95												
FHJ13	4.00 2.07 6.07	B	Mean H3	7.87	0.112	2070.00	16.78												
FHJ13	4.00 2.07 6.07	B	CoeVar H1	29.7%	29.7%	3.9%	32.3%												
FHJ13	4.00 2.07 6.07	В	CoeVar H2	#DEV/01	#DEV/01	#DIV/0!	#DIV/01												
FHJ13	4.00 2.07 6.07	B	CoeVar H3	1.5%	1.5%	2.5%	3.7%												
FHJ13	4.00 2.07 6.07	B	Median B		L				78		10.9								
FHJ13	4.00 2.07 6.07	B	W Mean B S1-end						93.4		9.0		<u> </u>					L	
FHJ13	4 00 2 07 6 07	В	W Mean B S2-end						67.9		12.7								
FHJ13 FHJ12	4.00 2.07 6.07	B P	W Mean B 1-chd						53.0		16.5							<u> </u>	
FH113	400 207 607	B	Mean B 3-7						53.0		16.5		-						
FHJ13	4.00 2.07 6.07	B	Mean B 4-8		<u> </u>				0.0									L	
FHJ13	4.00 2.07 6.07	B	Mean B						53.0		16.5							13.24	
FHJ13	4.00 2.07 6.07	В	CoeVar B															4.0%	
FHJ13	4.00 2.07 6.07	C	Initial					162											
FHJ13	4 00 2 07 6 07	C	S1					281	119		7.0								(
FHU13	4.00 2.07 6.07	č	52					401	/1	79.7	12.1							11.97	
FHI13	4.00 2.07 6.07	č	2					433	HIT	19.1	17.5							12.33	
FHJ13	4.00 2.07 6.07	č	3															12.81	
FHJ13	4.00 2.07 6.07	C	4																
FHJ13	4.00 2.07 6.07	C	5																
FHJ13	4.00 2.07 6.07	С	6																
FHJ13	4.00 2.07 6.07	C	7																
FHJ13	4.00 2.07 6.07	C	8 M. F. (7						- 21		10.1								
FHJ13 FHJ12	4.00 2.07 6.07	C C	Median C W Mass C S1 and						71		121								
FHJ13	4.00 2.07 6.07	č	W Mean C S1-end						62.0		13.9							L 1	
FHJ13	4.00 2.07 6.07	č	W Mean C 1-end						49.0		17.9								
FHJ13	4.00 2.07 6.07	Č	W Mean C 3-7						49.0		17.9								
FHJ13	4.00 2.07 6.07	C	Mean C 3-7						49.0		17.9								
FHJ13	4.00 2.07 6.07	C	Mean C 4-8						0.0										
FHJ13	4.00 2.07 6.07	C	Mean C						49.0		17.9							12.37	
FHJ13	4.00 2.07 6.07	C	CoeVar C															3.4%	
FHJ13	4.00 2.07 6.07	D	1									1790.1	1741.3	10(2.2	1753.4	99.3%	102.1%	12.59	
FHJ13	4.00 2.07 6.07	Б	2									1790.1	1910.1	1852.7	1753.4	103.0%	102 1%	12.32	
FHJ13	4.00 2.07 6.07	E	2									1790.1	1022.1	1723.4	1753.4	103.9%	102.1%	11.55	
FHI13	4 00 2 07 6 07	DE	Mean DE									1790.1	1781.7	1818.1	1753.4	102.7%	102.176	12.00	12.75
EH113	4 00 2 07 6 07	DE	CoeVer DE									1779.1	3 784	2 784	1100.4	2 794		4.5%	10.70

Sample ID	0 0	Gradat	ion		Location		. 1	LWD			D	CP					Density			Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
	-0101	-		1.0410.1221000		IkNI	IMPal	[mm]	IMPal	Imml	[mm blow]	Imm blowl	IMPal	Beg/m31	Bcg/m31	[kg/m3]	Ikg/m31	1%1	[%]	1%1	1%1
KL07	3.85	1.57	5.42	A	Instal	1				178				1. 1111 - 112 - 11			12.2				~~~~
KLO7	3.85	1.57	5.42	A	\$1					266	88		9.6								
KLO7	3.85	1.57	5.42	A	S2					302	36		24.8								
KLO7	3.85	1 57	5.42	A	1					332	30	51.3	30.2	1						7.09	
KL07	3.85	1.57	5.42	A	2	<u> </u>	-			357	25	30.3	36.6	-	-		1			7.19	
KLO7	3 85	1.57	5.42	<u>^</u>					-	388	23	20.0	40.0	-			-	-		1.40	
V107	3.95	1.57	5.42	A	2					418	12	20.3	40.4		-	7					
KL07	3.85	1.57	5.42	Â	6					433	15	177	62.9								
KLO7	3.85	1.57	5.42	A	7	1			5 5	447	HIT					6	2	5			
KLO7	3.85	1.57	5.42	A	8					01040	0.046		Sector Sector								
KLO7	3.85	1.57	5.42	A	Median A						24		38.2							1	
KLO7	3.85	1.57	5.42	A	W Mean A S1-end						47.2		18.6	1		-	-				
KL07	3.85	1.57	5.42	A	W Mean A S2-end						42.7		35.5	-		-	-				
V107	3.02	1.2/	5.42	A	W Mean A 1-chu						22.9		40.1							-	
KLO7	3.85	1.57	5.42	A	Mean A 3-7						23.2		39.6	1							
KLO7	3.85	1.57	5.42	A	Mean A 4-8		i		1		20.2		45.9	3		12	S	2			
KLO7	3.85	1.57	5.42	A	Mean A						21.8		44.7	(7.25	
KLO7	3.85	1.57	5.42	A	CoeVar A					1.100	24.5%		26.2%	1		1				0.03	
KLO7	3.85	1.57	5.42	B	Instal		0.100	007	16.0	186	00		0.0	1							
K107	3.82	1.27	5.42	B	87	3.4	0.108	987	12.2	321	36		8.2 24.2								
KLO7	3.85	1.57	5.42	B	1	3.3	0.105	419	34.8	347	26	53.7	35.1		<u> </u>	<u> </u>				7.34	
KLO7	3.85	1.57	5.42	В	2	3.3	0.105	393	37.1	371	24	28.7	38.2							6.58	
KLO7	3.85	1.57	5.42	B	3	3.3	0.105	382	38.1	392	21	23.7	44.0							7.48	
KLO7	3.85	1.57	5.42	B	4	5.6	0.178	613	40.3	410	18	21.0	51.9								
KL07	3.85	1.57	5.42	B	5	5.6	0.178	571	43.3	426	16	18.3	58.8		<u> </u>						
KL07	3.85	1.57	5.42	B	0	5.0	0.178	546	45.3	437	HIT										
KL07	3.02	1.27	5.42	B	2	70	0.235	724	40.0												
KLO7	3.85	1.57	5.42	B	9	7.5	0.239	654	50.6												
KLO7	3.85	1.57	5.42	B	Mean H1	3.30	0.105	398.00	36.65												
KLO7	3.85	1.57	5.42	B	Mean H2	5.60	0.178	576.67	42.95												
KLO7	3.85	1.57	5.42	B	Mean H3	7.80	0.248	706.67	48.80												
KL07	3.85	1.57	5.42	B	CoeVar H1	0.0%	0.0%	4.8%	4.7%												
KLO7	3 80	1.57	5.42	B	CoeVar H2 CoeVar H2	2.49/	0.0%	3.9%	2.0%												
KL07	3.02	1.27	5.42	B	Median B	3.470	3.470	7.179	3.770		24		38.7								
KL07	3.85	1.57	5.42	B	W Mean B S1-end						55.7		15.6								
KLO7	3.85	1.57	5.42	B	W Mean B S2-end						25.3		36.1								
KLO7	3.85	1.57	5.42	B	W Mean B 1-end						21.6		42.6								
KLO7	3.85	1.57	5.42	B	W Mean B 3-7						21.6		42.6								
KL07	3.85	1.57	5.42	B	Mean B 3-7						21.0		44.0								
KL07	3.85	1.57	5.42	P	Mean R						21.0		45.6							713	
KL07	3.85	1.57	5.42	B	CoeVar B		<u> </u>				19.6%		21.4%			<u> </u>				6.8%	
KLO7	3.85	1.57	5.42	C	Initial					202											
KLO7	3.85	1.57	5.42	С	\$1					289	87		9.7								
KL07	3.85	1.57	5.42	c	S2					327	38	60.0	23.5							210	
KL07	3.85	1.57	5.42	C	2					353	20	28.2	35.1		-					6 70	
KL07	3.85	1.57	5.42	C	3					396	21	20.5	44.0							7.09	
KL07	3.85	1.57	5.42	č	4					412	16	19.7	58.8							7.05	
KLO7	3.85	1.57	5.42	Ċ	5					427	15	17.7	62.9								
KLO7	3.85	1.57	5.42	C	6					443	16	15.7	58.8								
KLO7	3.85	1.57	5.42	C	7					454	HIT										
KL07	3.85	1.57	5.42	c	8						01.6		10.0								
KL07	3.85	1.57	5.42	C	W Mean C St. and						21.5		43.0								
KL07	3.85	1.57	5.42	C	W Mean C S1-end						47.1		37.3								
KL07	3.85	1.57	5.42	c	W Mean C 1-end						20.2		46.0								
KLO7	3.85	1.57	5.42	Č	W Mean C 3-7						20.8		44.4								
KL07	3.85	1.57	5.42	C	Mean C 3-7						20.0		46.4								
KLO7	3.85	1.57	5.42	C	Mean C 4-8						18.0		51.9								
KL07	3.85	1.57	5.42	c	Mean C						19.3		50.3							6.99	
KL07	3.85	1.57	5.42	C	CoeVar C						22.6%		ZZ 6%	10472.0	17720.2		10/0.2	05.597	00.00/	2.5%	
K107	3.85	1.57	5.42	E	1									1847.3	1778.3	1773.3	1862.3	95.5%	99.2%	7.00	
KL07	3.85	157	5.42	D	2									1847 3	1845.1	1773.3	1862.3	99.1%	99.2%	6.57	
KLO7	3.85	1.57	5.42	E	2									1847.3		1935.4	1862.3	103.9%	99.2%	7.01	
KLO7	3.85	1.57	5.42	DE	Mean DE									1847.3	1811.7	1854.4	1862.3	98.4%		6.84	7.05
KL07	3.85	1.57	5.42	DE	CoeVar DE										2.6%	6.2%		4.1%		3.1%	

Sample ID	Gradation		Location			LWD			L	CP	<u>.</u>		0	20	Density		4	Moisture	Content
Sample	CGN FGN GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven dry	
WI 0770 32	2.46 1.62 6.45		#	[kN]	[MPa]	[mm]	[MPn]	[mm]	[mm/blow]	[mm blow]	[AIPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%]	[%]
KL07X1.33	3.85 1.57 5.42	A	SI					129	70		12.3								
KLO7X1.33	3.85 1.57 5.42	A	S2					164	35		25.6								
KL07X1 33	385 157 542	A	2					209	20	267	46.4							6.95	
KLO7XI 33	385 157 542	A	3					221	12	19.0	79.8							7.05	
KL07X1.33	3.85 1.57 5.42	A	4	-				238	17	18.0	55.1		-						
KL07X1.33	3.85 1.57 5.42	A	6					265	12	14.7	79.8								
KL07X1 33	385 1.57 5.42	A	7	(S		1	2	279	14	13.7	677	1		2					_
KL07X1.33	3.65 1.57 5.42	A	9	-			-	289	10	11.3	96.8					-			
KL07X1.33	3.85 1.57 5.42	A	10					304	5	8.3	202.1								
KL07X1 33	385 1.57 5.42	A	11 Median á					313	HIT 14.5		65.3							1	
KL07X1 33	3.85 1.57 5.42	Â	W Mean A S1-end						34.2		26.3	-							
KL07X1.33	3.85 1.57 5.42	A	W Mean A S2-end						19.8	-	46.8							-	
KL07X1.33	3.85 1.57 5.42	Â	W Mean A 3-7						18.9		49.2								
KL07X1 33	385 157 542	A	Mean A 3-7						17.8		52.5								
KL07X1.33	3.85 1.57 5.42	A	Mean A 8-12						10.2		94.8							-	
KL07X1.33	3.85 1.57 5.42	A	Mean A.						14.0		82.4							6.96	
KL07X133	385 157 542 385 157 542	B	CoeVar A					58	40.4%		56.5%							0.01	
KL07X1.33	385 1.57 5.42	B	S1	3.5	0.111	1072	14.4	122	64		13.5	J		0.	0			19	
KL07X1.33	3.85 1.57 5.42	B	<u>S2</u>	3.5	0.111	372	41.5	159	37	42.0	24.1							6.79	
KL07X1.33	3.85 1.57 5.42	B	2	3.3	0.105	303	48.1	204	20	27.3	46.4							7.50	
KLO7X1.33	3 85 1 57 5.42	B	3	3.3	0.105	312	46.7	222	18	21.0	51.9							7.11	
KL07X1.33	3.85 1.57 5.42	B	5	5.7	0.101	464	54.2	250	14	16.0	67.7								
KL07X1.33	3.85 1.57 5.42	B	6	5.7	0.181	435	57.8	265	13	14.3	73.3								
KL07X1.33 KL07X1.33	3.85 1.57 5.42	B	8	8.4	0.267	559	59.0	288	HIT	13.0	79.8								
KLO7X1.33	3 85 1 57 5.42	В	9	8.4	0.267	548	67.6												
KL07X1.33 KL07X1.33	3.85 1.57 5.42	B	10																
KL07X1.33	3.85 1.57 5.42	B	Mean H1	3.33	0.106	313.33	46.97												
KLO7X1.33	3 85 1.57 5.42	B	Mean H2 Mean H2	5.70	0.181	476.33	53.17		-										
KL07X1.33	3.85 1.57 5.42	B	CoeVar H1	1.7%	1.7%	3.5%	2.1%												
KL07X1.33	3.85 1.57 5.42	B	CoeVar H2	0.0%	0.0%	10.2%	9.9%												
KL07X1.33	3.85 1.57 5.42	B	Median B	0.076	0.076	0.976	0.7%		18		51.9								
KL07X1.33	3 85 1 57 5.42	В	W Mean B S1-end						34.6		25.9								
KL07X1.33 KL07X1.33	3.85 1.57 5.42	B	W Mean B S2-end W Mean B L-end						22.5		<u>41.0</u> 52.1								
KL07X1.33	3.85 1.57 5.42	B	W Mean B 3-7						19.4		48.0								
KL07X1.33	385 1.57 5.42	B	Mean B 3-7 Mean B 4-8						18.6		50.1								
KL07X1.33	3.85 1.57 5.42	B	Mean B						14.6		66.3							7.13	
KL07X1.33	3.85 1.57 5.42	B	CoeVar B					67	31.2%		23.2%							5.0%	
KL07X1.33	3.85 1.57 5.42	č	S1					117	60		14.4								
KL07X1.33	3.85 1.57 5.42	C	82					151	34	20.2	26.4						_	7.00	
KL07X1.33	3.85 1.57 5.42	č	2					1/5	24	26.0	46.4							7.18	
KL07X1.33	3.85 1.57 5.42	c	3					212	17	20.3	55.1							7.27	
KL07X1.33	385 1.57 5.42	C	4					220	14	15.0	67.7								
KLO7X1.33	3 85 1 57 5 42	C	6					255	15	14.3	62.9								
KL07X1.33 KL07X1.33	3.85 1.57 5.42	C	7					267	12	13.7	96.8								
KL07X1.33	3.85 1.57 5.42	č	9					287	10	10.7	96.8								
KLO7X1.33	385 1.57 5.42	C	10					296	9	9.7	108.3								
KLO7X1.33	3.85 1.57 5.42	č	12					313	9	8.7	108.3								
KL07X1.33	3.85 1.57 5.42	C	13					321	8	8.3	122.7								
KL07X1.33 KL07X1.33	3.85 1.57 5.42	C	Median C					328	13	8.0	73.3								
KL07X1.33	3 85 1 57 5.42	Ċ	W Mean C S1-end						27.0		33.7								
KL07X1.33 KL07X1.33	3.85 1.57 5.42 3.85 1.57 5.42	C C	W Mean C S2-end W Mean C Lend						17.6		53.0 65.3								
KL07X1.33	3.85 1.57 5.42	č	W Mean C 3-7						18.6		50.0								
KL07X1.33	385 1.57 5.42	C	Mean C 3-7 Mean C 4-2						17.8		52.5								
KL07X1.33	3.85 1.57 5.42	č	Mean C 8-12						11.2		85.8								
KL07X1.33	3.85 1.57 5.42	C	Mean C						12.6		86.8							7.24	
KL07X1.33	3.85 1.57 5.42	D	Loevar C						39 7%		30.3%	1936.6	1931.8		1862.3	103.7%	104.0%	6.81	
KLO7X1.33	3 85 1 57 5.42	E	1									1936.6	10.00	1964.4	1862.3	105.5%	104.0%	6.93	
KL07X1.33 KL07X1.33	3.85 1.57 5.42 3.85 1.57 5.42	E	2									1936.6	1958.0	2754.9	1862.3	105.1%	104.0%	7.16	
KL07X1.33	3.85 1.57 5.42	DE	Mean DE									1936.6	1944.9	2359.7	1862.3	115.6%		6.99	7.08
KL07X1.33	3 85 1.57 5.42	DE	CoeVar DE										1.0%	23.7%		18.7%		2.2%	

Sample ID		Gradatio	m		Location		- 3	LWD			D	CP	0				Density	5 V		Moisture	Content
Sample	CGN	FGN	GN	Section	Trial #	Force [kN]	Stress [MPa]	Deflection [mm]	E [MPn]	Reading [mm]	DPI [mm/blow]	3 pt avg [mm/blow]	E [MIPa]	Barrel [kg/m3]	S cone [kg/m3]	L cone [kg/m3]	Proctor [kg/m3]	Relative cone [%]	Relative barrel [%]	Oven-dry [%]	[%*]
KLOSXI.5	3.85	1.57	5.42	A	Initial	1 10 1010		17 - 17 - 1		180	20		12.6	1. 1111 - 111 - 1 1			100000				Con a series
KLO8X1.5	3.85	1.57	5.42	A	\$1 \$2					289	31		29.1				-				
KLO8X1.5	3.85	1.57	5.42	A	1	1	1	1	5	303	23	41.0	40.0	2		Ť		1		7.89	
KLO8X1.5	3.85	1.57	5.42	A	2	<u> </u>				323	20	24.7	46.4	1		1				7.79	
KLO8XI S	385	1.57	5.42	A	4					341	18	17.7	62.9	-		-				1.92	
KLO8X1 5	3.85	1.57	5.42	A	5					371	15	16.0	62.9	3				2			
KLO8X1.5	3.85	1.57	5.42	A	6					386	15	15.0	62.9	1							
KLO8X1.5	3.85	1.57	5.42	A	7					398	12	14.0	79.8			1					
KLO8X1.5	3.85	1.57	5.42	Â	9					420	10	11.3	96.8	1		5		1			
KLO8XI.5	3.85	1.57	5.42	A	10					430	10	10.7	96.8								
KLO8X1.5	3.85	1.57	5.42	A	11 Madian A					440	HIT	-	62.0			12					
KLO8X1.5	3.85	1.57	5.42	A	W Mean A S1-end						32.6		27.7								
KLO8XI 5	3.85	1.57	5.42	A	W Mean A S2-end						18.7		49.9	3			1				
KLO8X1.5	3.85	1.57	5.42	A	W Mean A 1-end	1					16.1		58.4	2		1.	-				
KLO8X1.5	3.85	1.57	5.42	A	Mean A 3-7						18.2		51.3								
KLO8X1 5	3.85	1.57	5.42	A	Mean A 4-8						16.6		56.5								
KLO8X1.5	3.85	1.57	5.42	A	Mean A 8-12						11.8		81.2	-						7.87	-
KLO8X1.5	3.85	1.57	5.42	A	CoeVar A						49.5%		35.1%	1. 1.						0.01	
KLO8XI 5	3 85	1 57	5.42	В	Initial					179											
KLO8XL5	3.85	1.57	5.42	B	\$1 \$2	3.5	0.111	307	18.0	247	88		12.6								
KLO8X1.5	3.85	1.57	5.42	B	1	3.6	0.115	281	56.5	306	25	42.3	36.6							8.39	
KLO8X1.5	3.85	1.57	5.42	В	2	3.5	0.111	269	57.4	326	20	26.3	46.4							7.74	
KL08X1.5	3.85	1.57	5.42	B	3	3.5	0.111	258	59.9	343	17	20.7	55.1							8.05	
KLO8X1.5	3.85	1.57	5.42	B	5	5.9	0.188	412	63.2	374	14	16.0	67.7								
KLO8X1.5	3.85	1.57	5.42	В	6	5.9	0.188	398	65.4	388	14	15.0	67.7								
KL08X1.5	3.85	1.57	5.42	B	7	8.3	0.264	580	63.2	399	11	13.0	87.5		<u> </u>						
KLO8X1.5	3.85	1.57	5.42	B	9	8.3	0.264	521	70.3	420	10	10.7	96.8								
KLO8X1.5	3.85	1.57	5.42	В	10					431	11	10.7	87.5								
KLO8X1.5	3.85	1.57	5.42	B	11 Magn H1	2.62	0.112	268.32	\$7.94	441	нг										
KLO8XI.5	3.85	1.57	5.42	B	Mean H2	5.87	0.187	425.67	61.14												
KL08X1.5	3.85	1.57	5.42	B	Mean H3	8.33	0.265	550.00	67.00												
KL08X1.5	3.85	1.57	5.42	B	CoeVar H1 CoeVar H2	1.0%	1.0%	4.3%	3.0%												
KLO8X1.5	3.85	1.57	5.42	B	CoeVar H3	0.7%	0.7%	5.4%	5.4%												
KLO8X1.5	3.85	1.57	5.42	B	Median B						15.5		60.8								
KLO8X1.5	3.85	1.57	5.42	B	W Mean B S1-end						32.7		27.5							-	
KLO8X1.5	3.85	1.57	5.42	B	W Mean B 1-end						16.4		57.3								
KLO8X1.5	3.85	1.57	5.42	В	W Mean B 3-7						19.3		48.1								
KLO8X1.5	3.85	1.57	5.42	B	Mean B 3-7 Mean B 4-8						18.6		50.1								
KLO8X1.5	3.85	1.57	5.42	B	Mean B 8-12						11.4		84.2								
KL08X1.5	3.85	1.57	5.42	B	Mean B						13.1		75.6							8.06	
KLO8X1.5	3.85	1.57	5.42	B	CoeVar B					180	36.6%		27.0%							4.0%	
KLO8X1.5	3.85	1.57	5.42	č	SI					247	67		12.9								
KLO8X1.5	3.85	1.57	5.42	C	\$2					280	33	40.7	27.3							0.10	
KLO8X15	3.85	1.57	5.42	C	2					302	19	24.7	49.0							7.89	
KLO8X1.5	3.85	1.57	5.42	Č	3					336	15	18.7	62.9							7.71	
KLO8X1.5	3.85	1.57	5.42	C	4					351	15	16.3	62.9								
KLO8X15	3.85	1.57	5.42	C	6					305	14	14.7	67.7								
KLO8X1.5	3.85	1.57	5.42	Ċ	7					390	ii	13.0	87.5								
KLO8X1.5	3.85	1.57	5.42	C	8					400	10	11.7	96.8								
KLO8X15	3.85	1.57	5.42	C	10					410	10	10.3	96.8								
KLO8X1.5	3.85	1.57	5.42	Č	ii					430	10	10.0	96.8								
KLO8X1.5	3.85	1.57	5.42	C	Median C						14		67.7								
KLO8X15	3.85	1.57	5.42	C	W Mean C S2-end						18.0		51.8								
KLO8X1.5	3.85	1.57	5.42	č	W Mean C I-end						14.7		64.2								
KLO8X1.5	3.85	1.57	5.42	C	W Mean C 3-7						14.7		64.2								
KLO8X1.5	3.85	1.57	5.42	C	Mean C 3-7 Mean C 4-8						17.0		61.2								
KLO8X1.5	3.85	1.57	5.42	č	Mean C 8-12						11.0		87.5								
KLO8X1.5	3.85	1.57	5.42	C	Mean C						13.6		75.2							7.90	
KL08X1.5	3.85	1.57	5.42	D	CoeVar C						29.6%	_	27.3%	1962.8	1890.1		1862.3	101 5%	105.4%	2.5%	
KLO8X1.5	3.85	1.57	5.42	E	1									1962.8	1090.1	2003.6	1862.3	107.6%	105.4%	7.87	
KLO8X1.5	3.85	1.57	5.42	D	2									1962.8	2001.1		1862.3	107.5%	105.4%	7.80	
KLO8X1.5	3.85	1.57	5.42	E	2 Mean D.F.									1962.8	1046.4	2028.2	1862.3	108.9%	105.4%	7.77	7.02
KLO8X1.5	3.85	1.57	5.42	DE	CoeVar DE									1702.0	4.0%	0.9%	1002.3	3.1%		2.4%	1.95

Sample ID	4	Gradatio	11		Location		. 1	LWD			D	CP					Density			Moisture (Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
				1.041073231100		IkNI	IMPal	(mm)	IMPal	Imml	Imm blowl	Imm blowl	IMPal	Beg/m31	Bcg/m31	[kg/m3]	Beg/m31	[%]	[%]	[%]	1%1
KLO9	3.85	1.57	5.42	A	Instal	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	66				Contraction of the set		1			100 M		
KLO9	3.85	1.57	5.42	A	\$1					157	91		9.3								
KLO9	3.85	1.57	5.42	A	S2					193	36		24.8				1				
KLO9	3.85	1 57	5.42	A	1	1	-		-	219	26	51.0	35.1	1		1				8.75	
KL09	3.65	1.57	5.42	A	2	1				244	25	29.0	30.0			-				8.53	
KLO9	3.85	157	542	-	4				-	20.3	19	23.3	49.0							9.96	
KLO9	3.85	1.57	5.42	A	3	1				299	17	18.3	551	1	-	1					_
KLO9	3.85	1.57	5.42	A	6					316	17	17.7	55.1								
KLO9	3.85	1.57	5.42	A	7	1.			1	329	HIT		2	S		16	2			1. 25	
KLO9	3.85	1.57	5.42	A	8				-						-		-			4	
KL09	3.85	1.27	5.42	A	Median A						10.7		41.9							-	
KL09	3.85	1.57	5.42	A .	W Mean & S2-end						24.5		37.4			-				-	
KLO9	3.85	1.57	5.42	A	W Mean A 1-end	1					21.1		43.7			5					
KLO9	3.85	1.57	5.42	A	W Mean A 3-7						21.8		42.3								
KLO9	3.85	1.57	5.42	A	Mean A 3-7						21.2		43.6	<u>(</u>			1	()			
KLO9	3.85	1.57	5.42	A	Mean A 4-8				()		19.4	-	47.9	S		N	5			0.02	
KL09	3.62	1.57	5.42	A	Coallor A						10.5		40.0	-						0.06	
KLO9	3.85	1.57	5.42	B	Initial	-				76	17.218		49.279	1		1				0.00	
KLO9	3.85	1.57	5.43	B	SI	3.5	0.111	689	22.4	163	86		9.9	1							
KLO9	3.85	1.57	5.42	B	82	3.5	0.111	398	38.8	206	44		20.1								
KLO9	3.85	1.57	5.42	B	1	3.5	0.111	366	42.2	235	29	53.0	31.3							9.55	
KL09	3.85	1.57	5.42	B	2	3.5	0.111	330	43.4	257	10	31.7	41.9							8.72	
KLO9	3.85	1.57	5.42	B	4	5.8	0.111	553	46.3	287	12	17.3	87.5							0.00	
KLO9	3.85	1.57	5.42	B	5	5.8	0.185	508	50.4	294	HIT										
KLO9	3.85	1.57	5.42	В	6	5.7	0.181	482	52.2												
KLO9	3.85	1.57	5.42	B	7	8.4	0.267	662	56.0												
KLO9	3.85	1.57	5.42	В	8	8.3	0.264	637	57.5												
KL09	3.62	1.27	5.42	D D	y Mean H1	0.3	0.204	256.00	39.0						<u> </u>						
KL09	3.85	1.57	5.42	B	Mean H2	5.77	0.184	514.33	49.62												
KLO9	3.85	1.57	5.42	B	Mean H3	8.33	0.265	640.00	\$7.50												
KLO9	3.85	1.57	5.42	B	CoeVar H1	0.0%	0.0%	2.8%	2.8%												
KLO9	3.85	1.57	5.42	B	CoeVar H2	1.0%	1.0%	7.0%	6.1%												
KL09	3.85	1.57	5.42	B	CoeVar H3	0.7%	0.7%	3.2%	2.6%		26.6		26.0								
KLO9	3.85	1.57	5.42	B B	W Mean B S1 and						20.0		33.8								
KLO9	3.85	1.57	5.42	B	W Mean B S2-end		<u> </u>				29.9		30.2		<u> </u>						
KLO9	3.85	1.57	5.42	B	W Mean B 1-end						22.3		41.3								
KLO9	3.85	1.57	5.42	В	W Mean B 3-7						22.3		41.3								
KL09	3.85	1.57	5.42	B	Mean B 3-7						20.3		45.8								
KLO9	3 85	1.57	5.42	B	Mean B 4-8						17.3		54.0							0.04	
KL09	3.85	1.57	5.42	B	CoeVar B						36.8%		46.7%							4.9%	
KLO9	3.85	1.57	5.42	c	Instial					76						1					
KLO9	3.85	1.57	5.42	С	S1					164	88		9.6								
KLO9	3.85	1.57	5.42	C	\$2					204	40	(2.0	22.2							0.22	
KL09	3.85	1.57	5.42	C	2					232	28	29.7	32.4							9.37	
KLO9	3.85	1.57	5.42	č	3					272	19	22.7	49.0							9.24	
KLO9	3.85	1.57	5.42	C	4					287	15	18.3	62.9								
KLO9	3.85	1.57	5.42	С	5					303	16	16.7	58.8								
KLO9	3.85	1.57	5.42	c	6					318	15	15.3	62.9								
KLO9	3.85	1.57	5.42	C	2					329	нп										
KL09	3.00	1.57	5.42	C	o Median C						20		46.4								
KLO9	3.85	1.57	5.42	č	W Mean C S1-end						48.1		18.3								
KLO9	3.85	1.57	5.42	Č	W Mean C S2-end						25.3		36.2								
KLO9	3.85	1.57	5.42	С	W Mean C 1-end						20.1		46.1								
KLO9	3.85	1.57	5.42	C	W Mean C 3-7						20.9		44.3								
KL09	3.85	1.57	5.42	C C	Mean C 3-7						19.8		46.9								
KL09	3.85	1.57	5.42	C	Mean C 4-6						19.0		51.7							9.04	
KLO9	3.85	1.57	5.42	č	CoeVar C						26.4%		23.5%							5.1%	
KLO9	3.85	1.57	5.42	D	1									1881.3	1829.5		1862.3	98.2%	101.0%	9.05	
KLO9	3.85	1.57	5.42	E	1									1881.3		1805.9	1862.3	97.0%	101.0%	8.77	
KLO9	3.85	1.57	5.42	D	2									1881.3	1843.1		1862.3	99.0%	101.0%	8.50	
KLO9	3.85	1.57	5.42	E	2 Maan DE									1881.3	1926.2	1901.1	1862.3	102.1%	101.0%	8.60	2.04
KL09	3.85	1.57	5.42	DE	CoeVar DE									1001.3	0.5%	3.6%	1002.3	2.2%		2.8%	0.34
Sample ID	Ş	Gradatio	n		Location		-	LWD			D	CP					Density			Moisture	Content
-----------	------	----------	------	---------	-----------------------------------	---------	--------	------------	---------	---------	-----------	-------------	---------	-----------	--------	-----------	--------------------	---------------	-----------------	----------	---------
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor Ikgin31	Relative cone	Relative barrel	Oven-dry	19/41
KLO9X.5	3.85	1.57	5.42	A	Instal	[new-1]	formul	Innul	from al	185	function1	Innecotoral	from al	[web.ured	[keme]	[set week	Intruci	1.4			1.41
KLO9X 5	3.85	1.57	5.42	A	S1					272	87		97					-			
KLO9X 5	3.85	1.57	5.42	Â	52		-		1	348	34	54.3	26.4	1		1		-		9.10	
KLO9X.5	3.85	1.57	5.42	A	2					376	28	34.7	32.4							8.29	
KLO9X 5	3 85	157	5.42	A	3					401	25	29 0	36.6							8.80	
KLO9X 5	3.85	1.57	5.42	A	S					434	18	19.3	51.9								
KLO9X.5	3.85	1.57	5.42	A	6					449	HIT										
KLO9X 5	3.85	1.57	5.42	A	8					-				- -						0 1	_
KLO9X.5	3.85	1.57	5.42	A	9									1							
KLO9X.5	3.85	1.57	5.42	A	10									-		-	-				
KLO9X.5	3.85	1.57	5.42	A	Median A	ý			5		28		32.4	10		1 43		1			
KLO9X.5	3.85	1.57	5.42	A	W Mean A S1-end						50.0		17.5								
KLO9X.5	3.65	1.57	5.42	A	W Mean A S2-end W Mean A 1-end						26.0		30.0								
KLO9X.5	3.85	1.57	5.42	A	W Mean A 3-7						26.0		35.2								
KLO9X 5	3.85	157	542	A	Mean A 3-7 Mean A 4-8						24.0		38.2								
KLO9X 5	3.85	1.57	5.42	Ä	Mean A						24.0		42.1	1						8 73	
KLO9X.5	3.85	1.57	5.42	A	CoeVar A					190	31.9%		35.7%				-			0.05	_
KLO9X.5	3.85	1.57	5.42	B	S1	3.1	0.099	2198	6.2	266	86		9.9								
KLO9X.5	3.85	1.57	5.42	B	82	3.5	0.111	521	29.6	304	38		23.5								
KLO9X.5	3.85	1.57	5.42	B	2	3.5	0.111	425	39.3	355	29	31.0	31.3							8.82	
KLO9X.5	3.85	1.57	5.42	В	3	3.5	0.111	370	41.7	380	21	25.3	44.0							8.94	
KLO9X.5	3.85	1.57	5.42	B	4	5.6	0.178	682	36.2	400	20	22.3	46.4								
KLO9X.5	3.85	1.57	5.42	B	6	5.6	0.178	540	45.8	430	15	16.7	62.9								
KLO9X.5	3.85	1.57	5.42	B	7	8.1	0.258	787	45.4	442	HIT										
KLO9X.5	3.85	1.57	5.42	B	9	8.2	0.261	671	53.9												
KLO9X.5	3.85	1.57	5.42	B	10																
KL09X.5	3.85	1.57	5.42	B	Mean HI	3.50	0.111	396.00	39.13												
KLO9X.5	3.85	1.57	5.42	В	Mean H2	5.63	0.179	602.33	41.67												
KLO9X.5	3.85	1.57	5.42	B	Mean H3 CoeVer H1	8.17	0.260	722.67	50.11												
KLO9X.5	3.85	1.57	5.42	B	CoeVar H2	1.0%	1.0%	12.0%	11.8%												
KLO9X.5	3.85	1.57	5.42	B	CoeVar H3	0.7%	0.7%	8.2%	8.6%		22.6		20.1								
KLO9X.5	3.85	1.57	5.42	B	W Mean B S1-end						46.6		18.9								
KLO9X.5	3.85	1.57	5.42	B	W Mean B S2-end						25.9		35.2								
KLO9X.5	3.65	1.57	5.42	B	W Mean B 1-end W Mean B 3-7						22.3		41.3								
KLO9X.5	3.85	1.57	5.42	В	Mean B 3-7						22.2		41.5								
KLO9X.5	3.85	1.57	5.42	B	Mean B 4-8 Mean B						19.4		47.9							8.86	
KLO9X.5	3.85	1.57	5.42	B	CoeVar B						32.1%		24.9%							0.8%	
KLO9X.5	3.85	1.57	5.42	C	Initial					266	07		0.7				1			-	
KLO9X.5	3.85	1.57	5.42	č	S2					306	40		22.2								
KLO9X 5	3.85	1.57	5.42	C	1					335	29	55.3	31.3							9.09	
KLO9X.5	3.85	1.57	5.42	č	3					382	24	25.3	40.0							8.78	
KLO9X.5	3.85	1.57	5.42	c	4					400	18	21.7	51.9								
KLO9X 5	3.85	1.57	5.42	C C	5					418	18	19.7	51.9								
KLO9X.5	3.85	1.57	5.42	č	7					443	HIT										
KLO9X.5	3.85	1.57	5.42	C	8																
KLO9X.5	3.85	1.57	5.42	c	10																
KLO9X.5	3.85	1.57	5.42	C	11 Mafaa Q						00.6		20.1								
KLO9X 5	3.85	1.57	5.42	C	W Mean C S1-end						52.2		16.7								
KLO9X 5	3.85	1.57	5.42	Ċ	W Mean C S2-end						26.5		34.4								
KLO9X 5	3.85	1.57	5.42	C	W Mean C 1-end W Mean C 3-7						22.3		41.2								
KLO9X.5	3.85	1.57	5.42	č	Mean C 3-7						22.4		41.1								
KLO9X 5	3.85	1.57	5.42	C	Mean C 4-8						20.0		46.4							8.92	
KLO9X.5	3.85	1.57	5.42	č	CoeVar C						21.8%		21.4%							1.9%	
KLO9X 5	3.85	1.57	5.42	D	1									1881.8	1915.6	1011.2	1862.3	102.9%	101.0%	8.26	
KLO9X 5	3.85	1.57	5.42	D	2									1881.8	1955.6	1911.2	1862.3	102.0%	101.0%	9.06	
KLO9X 5	3.85	1.57	5.42	Е	2									1881.8		1937.5	1862.3	104.0%	101.0%	8.90	
KLO9X 5	3.85	1.57	5.42	DE	Mean DE CoeVer DE									1881.8	1935.6	1924.3	1862.3	103.6%		8.78	0.04

Sample ID	8	Gradatio	m	12	Location		. 1	LWD			D	CP					Density		//	Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	F	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
				041075220000		IkNI	IMPal	[mm]	IMPal	Imml	[mm/blow]	Imm blowl	IMPal	Beg/m31	lkg/m31	[kg/m3]	Ikg/m31	1%1	1%1	1%1	1%1
KLO10	3.85	1.57	5.42	A	Instal	ince.1	[cost of	Turnit	from al	62	[man mont]	[main or or of	(area of	1.11.1 T.1	Tere werd	[ng mo.]	first und		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
KLO10	3.85	1.57	5.42	A	S1		-			137	75		11.4								
KLO10	3.85	1.57	5.42	A	S2					183	46		19.2								
KLO10	3.85	1 57	5.42	A	1					218	35	52.0	25.6	1	-	1				11.00	
KLO10	3.85	1.57	5.42	A	2					240	28	30.3	32.4							10.62	
KLO10	3.85	1.57	5.42	-	Å				-	230	19	29.0	49.0				-			10.39	
KLO10	3.85	1.57	5.42	A	3					308	19	20.7	49.0	1	-						_
KLO10	3.85	1.57	5.42	A	6					325	HIT										
KLO10	3.85	1.57	5.42	A	7		1		1					S		10	2			1. 1.	
KLO10	3.85	1.57	5.42	A	8				-						-	-				1 A	
KLOID	5.85	1.27	2.42	A	Median A					-	28		324								
KLOID	3.85	1.57	5.42	A	W Mean A S2-end						31.7		28.4			-	-				
KLO10	3.85	1.57	5.42	A	W Mean A 1-end	1					26.5		34.5	1		5				-	
KLO10	3.85	1.57	5.42	A	W Mean A 3-7						26.5		34.5								
KLO10	3.85	1.57	5.42	A	Mean A 3-7	1				}	25.0		36.6	<u>(</u>		1					
KLO10	3.85	1.57	5.42	A	Mean A 4-8				1		22.5	-	40.9	S		12	0	-		10.22	
KLO10	3.82	1.57	5.42	A	Coalloc A						25.0		36.6	-			-			0.03	
KLO10	3.85	1.57	5.42	B	Initial	()				69			au. 7/6	1			-	-		0.03	
KLO10	3.85	1.57	5.43	B	SI	2.8	0.089	961	12.9	145	76		11.2	1						1	
KLO10	3.85	1.57	5.42	B	\$2	3.3	0.105	597	24.4	190	45		19.6								
KLO10	3.85	1.57	5.42	B	1	3.3	0.105	571	25.5	224	34	51.7	26.4							10.36	
KLO10	3.85	1.57	5.42	B	2	3.3	0.105	572	25.5	253	29	36.0	31.3							10.83	
KLO10	3.85	1.57	5.42	B	4	5.5	0.102	653	36.5	292	21	22.0	44.0							10.07	
KLO10	3.85	1.57	5.42	B	5	5.3	0.169	743	31.5	315	17	20.7	55.1								
KLO18	3.85	1.57	5.42	В	6	5.4	0.172	725	32.9	329	HIT										
KLO10	3.85	1.57	5.42	B	7	7.9	0.251	871	40.0												
KLO10	3.85	1.57	5.42	В	8	7.9	0.251	844	41.3												
KLOI0	3.85	1.57	5.42	B	9 Mage H1	8.1	0.258	829	43.1						<u> </u>						
KLO10	3.85	1.57	5.42	B	Mean H2	5.37	0.171	707.00	33.62												
KLO10	3.85	1.57	5.42	B	Mean H3	7.97	0.254	848.00	41.49												
KLO10	3.85	1.57	5.42	B	CoeVar H1	0.0%	0.0%	2.4%	2.4%												
KLO10	3.85	1.57	5.42	B	CoeVar H2	1.1%	1.1%	6.7%	7.7%												
KLO10	3.85	1.57	5.42	B	CoeVar H3	1.4%	1.4%	2.5%	3.7%		20		21.2								
KLOI0	3.80	1.57	5.42	B P	W Mean P S1 and						45.1		31.3								
KLO10	3.85	1.57	5.42	B	W Mean B S2-end		<u> </u>				31.3		28.8		<u> </u>						
KLO10	3.85	1.57	5.42	В	W Mean B 1-end						26.4		34.5								
KLO10	3.85	1.57	5.42	В	W Mean B 3-7						26.4		34.5								
KLO10	3.85	1.57	5.42	B	Mean B 3-7						25.0		36.6								
KLO10	3.85	1.57	5.42	B	Mean B 4-8						22.8		40.5							10.60	
KLO10	3.85	1.57	5.42	B	CoeVar B						25.0		28.8%							2.6%	
KLO10	3.85	1.57	5.42	C	Instial					67			00.010			1	1	1			
KLO18	3.85	1.57	5.42	С	S1					130	63		13.7								
KLO10	3.85	1.57	5.42	C	\$2					176	46	11.0	19.2								
KLO10	3.85	1.57	5.42	<u> </u>	2					207	31	40.7	29.1							10.49	
KLO18	3.85	1.57	5.42	č	3					255	23	27.3	40.0							10.20	
KLO10	3.85	1.57	5.42	C	4					279	21	24.0	44.0							10,75	
KLO18	3.85	1.57	5.42	C	5					297	18	20.7	51.9								
KLO10	3.85	1.57	5.42	C	6					313	16	18.3	58.8								
KLO18	3.85	1.57	5.42	C	7					326	HIT										
KLO10	3.85	1.57	5.42	C	ð Medion C						25.5		26.9								
KLO10	3.85	1.57	5.42	č	W Mean C S1-end						38.1		23.4								
KLO18	3.85	1.57	5.42	Č	W Mean C S2-end						29.6		30.6								
KLO10	3.85	1.57	5.42	C	W Mean C 1-end						24.1		38.1								
KLO10	3.85	1.57	5.42	C	W Mean C 3-7						25.1		36.4								
KLO10	3.85	1.57	5.42	C	Mean C 3-7						24.2		37.9								
KLO10	3.85	1.57	5.42	C	Mean C 4-8						21.2		43.0							10.56	
KLO18	3.85	1.57	5.42	č	CaeVar C						25.3%		26.5%							3.2%	
KLO10	3.85	1.57	5.42	D	1									1915.5	1843.12		1862.29	99.0%	102.9%	10.39	
KLO18	3.85	1.57	5.42	E	1									1915.5		1842.6	1862.3	98.9%	102.9%	10.36	
KLO10	3.85	1.57	5.42	D	2									1915.5	1937.59	1010.1	1862.3	104.0%	102.9%	9.73	
KLO10	3.85	1.57	5.42	E	2 Mars DF									1915.5	1900.4	1949.6	1862.3	104.7%	102.9%	9.97	10.61
KLO18	3.85	1.57	5.42	DE	CoeVar DE									1915.5	3.5%	4.0%	1002.3	3.1%		3.1%	10.51

Sample ID	10	Gradatio	11		Location			LWD			D	CP			1		Density	5		Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	F	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
						[kN]	[MPa]	[mm]	[MPa]	[mm]	[mm blow]	[mm blow]	[MPa]	[kg/m3]	[kg/m3]	[kg/m3]	[kg/m3]	[%]	[%]	[%]	[%]
KLO10X.5	3.85	1.57	5.42	A	Instal	a in chin a		27 1010		61	710	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	10.0	1112 77-10		-					2010/201
KLO10X S	3.85	1.57	5.42	Â	S2					183	43		20.6	-							
KLO10X 5	3.85	1.57	5.42	A	1					217	34	52.0	26.4	0						9.79	
KLO10X.5	3.85	1.57	5.42	A	2		-			245	28	35.0	32.4	1		1				10.21	
KLOI0X 5	3 85	1.57	5.42	A	3					271	20	29.3	40.0				-			10.12	
KLOI0X S	3.85	1.57	5.42	A	S					314	20	23.0	46.4	1 7							
KLO10X.5	3.85	1.57	5.42	A	6					330	HIT										
KLOI0X S	3.85	157	542	A	8											10				()	_
KLOI0X S	3.85	1.57	5.42	Ä	ý,																
KLO10X 5	3.85	1.57	5.42	A	10																
KLOIUX S	3.85	1.57	5.42	A	11 Median à						28		37.4			1.					
KLOI0X S	3.85	1.57	5.42	Ä	W Mean A S1-end						46.0		19.2								
KLO10X.5	3.85	1.57	5.42	A	W Mean A S2-end						31.0		29.1	-							
KLOI0X S	3.85	1.57	5.42	A	W Mean A 1-end						27.1		33.6							i — 1	_
KLO10X 5	3.85	1.57	5.42	Â	Mean A 3-7	1					26.2		34.8	-		1	-				
KLO10X.5	3.85	1.57	5.42	A	Mean A 4-8	1	-				24.3		37.8	9	1				-		
KLOI0X S	3 85	1.57	5.42	A	Mean A CoolVer A				-		26.2		36 1	-						10.04	
KLOI0X S	3.85	1.57	5.42	B	Initial				-	69	20.379		21.0%	-		1.1	-			0.02	_
KLO10X.5	3.85	1.57	5.42	B	S1	3.2	0.102	1697	8.3	148	79		10.8				-				
KLO10X S	3.85	1.57	5.42	B	S2 1	3.5	0.111	619	25.0	196	48	54.0	18.3							10.29	
KLO10X 5	3.85	1.57	5.42	B	2	3.5	0.111	485	31.8	260	29	37.3	31.3							11.05	
KLO10X.5	3.85	1.57	5.42	B	3	3.4	0.108	477	31.5	287	27	30.3	33.7							10.61	
KLO10X S	3.85	1.57	5.42	B	4	5.8	0.185	686	37.3	305	18	24.7	51.9								
KLO10X 5	3.85	1.57	5.42	B	6	5.6	0.178	634	39.0	333	ніт	21.5	42.0								
KLO10X.5	3.85	1.57	5.42	B	7	8.1	0.258	842	42.5												
KLO10X S	3.85	1.57	5.42	B	8	8.1	0.258	762	46.9												
KLOI0X 5	3.85	1.57	5.42	B	10	0.4	0.201	152	42.4												
KLO10X.5	3.85	1.57	5.42	В	11																
KLO10X 5	3.85	1.57	5.42	B	Mean HI Mean H2	3.47	0.110	505.00	30.41												
KLO10X 5	3.85	1.57	5.42	B	Mean H3	8.13	0.259	778.67	46.27						<u> </u>						
KLO10X.5	3.85	1.57	5.42	В	CoeVar H1	1.7%	1.7%	8.3%	7.1%												
KLO10X 5	3.85	1.57	5.42	B	CoeVar H2 CoeVar H2	2.0%	2.0%	4.6%	2.5%												
KLOI0X 5	3.85	1.57	5.42	B	Median B	0.770	0.779	7.379	7.070		29		31.3		<u> </u>						
KLO10X.5	3.85	1.57	5.42	В	W Mean B S1-end						47.2		18.7								
KLO10X 5	3.85	1.57	5.42	B	W Mean B S2-end						32.9		27.4							i —	
KLO10X 5	3.85	1.57	5.42	B	W Mean B 3-7						27.2		33.5								
KLO10X.5	3.85	1.57	5.42	В	Mean B 3-7						25.6		35.7								
KLO10X 5	3.85	1.57	5.42	B	Mean B 4-8 Meen B						23.3		39.5							10.65	
KLO10X 5	3.85	1.57	5.42	B	CoeVar B						33.4%		25.7%							3.6%	
KLO10X.5	3.85	1.57	5.42	C	Initial					63						-					
KLOIUX S	3.85	1.57	5.42	C	S1 62					145	40		22.2								
KLO10X.5	3.85	1.57	5.42	č	1					214	29	48.7	31.3							9.63	
KLO10X.5	3.85	1.57	5.42	C	2					242	28	32.3	32.4							11.04	
KLOI0X.5	3.85	1.57	5.42	C	3					200	24	27.0	<u>38.2</u> 58.8							10.81	
KLO10X.5	3.85	1.57	5.42	č	5					297	15	18.3	62.9								
KLO10X.5	3.85	1.57	5.42	C	6					316	19	16.7	49.0								
KLOI0X.5	3.85	1.57	5.42	C	8					330	HI										
KLO10X.5	3.85	1.57	5.42	č	9																
KLO10X.5	3.85	1.57	5.42	C	10																
KLO10X.5	3.85	1.57	5.42	C	II Median C						26		35.1								
KLOI0X.5	3.85	1.57	5.42	č	W Mean C S1-end						42.6		20.8								
KLO10X 5	3.85	1.57	5.42	C	W Mean C S2-end						27.2		33.5								
KLO10X.5	3.85	1.57	5.42	C	W Mean C I-end						23.2		39.6								
KLO10X.5	3.85	1.57	5.42	č	Mean C 3-7						22.4		41.1								
KLO10X 5	3.85	1.57	5.42	Ĉ	Mean C 4-8						20.4		45.4								
KLO10X.5	3.85	1.57	5.42	C	Mean C						21.8		45.4							10.49	
KLOI0X 5	3.85	1.57	5.42	D	Loevar G						21.176		29 876	1916.3	1906.8		1862.3	102.4%	102.9%	10.31	
KLO10X.5	3.85	1.57	5.42	E	1									1916.3		1898.7	1862.3	102.0%	102.9%	10.09	
KLO10X.5	3.85	1.57	5.42	D	2									1916.3	1905.6	1045.6	1862.3	102.3%	102.9%	9.87	
KLOIDX S	3.85	1.57	5.42	DE	2 Mean DE									1916.3	1906.2	1945.0	1862.3	109.3%	102.9%	10.23	10.33
K1 0107 S	2.00	1.67	5.42	DE	ConVer DF										0.024	1 797	1000.0	1 19/		1.00/	

Sample ID	G	radation	1. I	2 - S	Location		1	.WD			D	CP					Density			Moisture	Content
Sample	CGN	FGN	GN	Section	Trial	Force	Stress	Deflection	E	Reading	DPI	3 pt avg	E	Barrel	S cone	L cone	Proctor	Relative cone	Relative barrel	Oven-dry	
11 HONOD2-2-2-					#	IkNI	[MPa]	[mm]	[MPa]	Imml	[mm/blow]	Imm blow]	IMPal	Bkg/m31	lkg/m31	[kg/m3]	Dkg/m31	[%]	[%]	[%]	[%]
KLO11	3.85	1.57	5.42	A	Instal	i in Circi	1	2 50 1		205	No. And Address of the		1		1.000	1	12.22		2.5 C.5		
KLO11	3.85	1.57	5.42	A	\$1					312	107		78								
KLO11	3.85	1.57	5.42	A	S2					392	80		10.6								
KLO11	3.85	1.57	5.42	A	1	2				441	HIT		10 - CO.	3						13.09	-
KLO11	3.85	1.57	5.42	A	2	<u>)</u>	-									1	-	-		12.92	_
RION	3 85	157	5.42	A	3						-			-			-			12.00	
KLOU	3.85	1.57	5.42	-		1								-							
KLO11	3.85	1.57	5.42	Â	6												-				
KLO11	3.85	1.57	5.42	A	7	1			1 1		10 A		2	2		6	Q 1	5		J. 5	
KLO11	3.85	1.57	5.42	A	8				1		() (<u> </u>	1				1			
KLOH	3.85	1.57	5.42	A	Median A.								<u> </u>								
KLOH	3.85	1.57	5.42	A	Mean A	2							0	-		1		-		12.87	
KLOH	3.82	1.27	2.42	<u>A</u>	Coevar A					100				-		-	-			0.02	
KLOH	3.85	1.57	5.42	B	S1	overload	na.	03	112	283	93		91				-				
KLO11	3.85	1.57	5.42	B	S2	overload	na	08	na	344	61		14.2	1			1			in the second	
KLO11	3.85	1.57	5.42	В	1	overload	na	na	na	399	55	69.7	15.8	N 2		N	S	2		11.95	
KLO11	3.85	1.57	5.42	В	2	no read	na	tia	na	427	HIT									12.74	
KLOH	3.85	1.57	5.42	B	3	3.2	0.102	2066	6.8					8						12.68	
KLOH	3.85	1.57	5.42	B	4	3.1	0.099	2114	0.5												
KLOH	3.85	1.27	5.42	B	6	overload	0.102	2001	7.1												
KLO11	3.85	1.57	5.42	B	7	overload	0.0	na	03												
KLO11	3.85	1.57	5.42	В	8	5.4	0.172	2060	11.6												
KLO11	3.85	1.57	5.42	В	9	5.5	0.175	2050	11.8												
KLO11	3.85	1.57	5.42	В	Mean H1	3.20	0.10	2066.00	6.84												
KLOII	3.85	1.57	5.42	B	Mean H2	3.15	0.10	2057.50	6.76												
KLOH	3 85	1.57	5.42	B	Mean HS	3.43	1.996	2055.00	4 296												
KLOII	3.85	1.57	5.42	B	CoeVar H2	2.3%	2.2%	3.9%	6.1%												
KLO11	3.85	1.57	5.42	B	CoeVar H3	1.3%	1.3%	0.3%	1.6%												
KLO11	3.85	1.57	5.42	B	Median B						61		14.2								
KLO11	3.85	1.57	5.42	B	W Mean B S1-end						73.7		11.6								
KLO11	3.85	1.57	5.42	В	W Mean B S2-end						58.2		14.9								
KLO11	3.85	1.57	5.42	B	W Mean B 1-end						55.0		15.8								
KLO11	3.65	1.57	5.42	D D	Mean B 3-7						55.0		15.8								
KLO11	3.85	1.57	5.42	B	Mean B 4-8						0.0		12.0								
KLO11	3.85	1.57	5.42	В	Mean B						55.0		15.8							12.46	
KLO11	3.85	1.57	5.42	В	CoeVar B															3.5%	
KLO11	3.85	1.57	5.42	C	Initial					190											
KLOH	3.85	1.57	5.42	C	S1					282	92		9.2	ļ	ļ]]			
KLOU	3.00	1.57	5.42	č	52					394	51	68.0	14.2							11.39	
KLO11	3.85	1.57	5.42	č	2					432	HIT	00.0	17.6							10.86	
KLO11	3.85	1.57	5.42	Č	3															11.14	
KLO11	3.85	1.57	5.42	С	4																
KLO11	3.85	1.57	5.42	C	5																
KLO11	3.85	1.57	5.42	<u> </u>	6																
KLO11	3.85	1.57	5.42	C	2																
KLO11	3.85	1.57	5.42	č	Median C						61		14.2								
KLO11	3.85	1.57	5.42	c	W Mean C S1-end						72.5		11.8								
KLO11	3.85	1.57	5.42	C	W Mean C S2-end						56.4		15.4								
KLO11	3.85	1.57	5.42	c	W Mean C 1-end						51.0		17.2								
KLO11	3.85	1.57	5.42	C	W Mean C 3-7						51.0		17.2								
KLO11	3.85	1.57	5.42	C	Mean C 3-7 Mean C 4-2						51.0		17.2								
KLO11	3.85	1.57	5.42	C	Mean C 4-8						51.0		17.2							11.13	
KLO11	3.85	1.57	5.42	č	CaeVar C								17.6							2.4%	
KLO11	3.85	1.57	5.42	D	1									1868.6	1841.0		1862.3	98.9%	100.3%	12.05	
KLO11	3.85	1.57	5.42	E	1									1868.6		1870.4	1862.3	100.4%	100.3%	12.04	
KLO11	3.85	1.57	5.42	D	2									1868.6	1921.1		1862.3	103.2%	100.3%	11.49	
KLOII	3.85	1.57	5.42	E	2 Mars DP									1868.6	1001.0	1888.8	1862.3	101.4%	100.3%	11.25	12.04
KLO11	3.00	1.57	5.42	DE	CoeVer DE									1000.0	3 024	1079.0	1002.3	1 994		3.4%	12.04

Appendix I – Fine Grained Soil Data

Dynam	ic Cone Pe	n etromete r					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	100%	102.3%	97.7%	1
Depth	of cone bel	ow surface at	start [mm]:		10						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
	_	From Start	Depth	Depth			Average DPI	_	-		-
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	$[\text{mm}^2/\text{blow}^2]$
0	10.0	0.0	10.0			-		-	-		-
1	48.0	38.0	48.0	29.0	38.0	1 444.0		-	-		-
2	83.0	73.0	83.0	65.5	35.0	1 225.0		35.0	35.0		-
3	117.0	107.0	117.0	100.0	34.0	1 156.0	35.7	34.5	34.5	34.5	1173.0
4	154.0	144.0	154.0	135.5	37.0	1 369.0	35.4	35.3	35.4	35.5	1 313.5
5	190.0	180.0	190.0	172.0	36.0	1 296.0	35.7	35.5	35.5	36.5	1314.0
6	227.0	217.0	227.0	208.5	37.0	1 369.0	36.7	35.8	35.8	36.5	1 350.5
7	265.0	255.0	265.0	246.0	38.0	1 444.0	37.0	36.2	36.2	37.5	1 425.0
8			-			-			-		-
9						-		-	-		-
10						-		-	-		-
11						-		-	-		-
12						-			-		-
*Top la	ıyer only, fii	rst blow notine	cluded						DPI5 ¹	[mm/blow]	36.13
									E ¹	[MPa]	24.75
									DPI5 ²	[mm/blow]	N/A
									E ²	[MPa]	N/A

Dynam	ic Cone Pe	en etromete r					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	100%	102.3%	97.7%	2
Depth	of cone bel	ow surface at	start [mm]:		12						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm²/blow²]
0	12.0	0.0	12.0			-		-	-		-
1	52.0	40.0	52.0	32.0	40.0	1 600.0		-	-		-
2	87.0	75.0	87.0	69.5	35.0	1 225.0		35.0	35.0		-
3	123.0	111.0	123.0	105.0	36.0	1 296.0	37.1	35.5	35.5	35.5	1278.0
4	160.0	148.0	160.0	141.5	37.0	1 369.0	36.0	36.0	36.0	36.5	1 350. 5
5	200.0	188.0	200.0	180.0	40.0	1 600.0	37.7	37.0	37.1	38.5	1 540. 0
6	239.0	227.0	239.0	219.5	39.0	1 521.0	38.7	37.4	37.5	39.5	1 540. 5
7	274.0	262.0	274.0	256.5	35.0	1 225.0	38.1	37.0	37.1	37.0	1 295.0
8						-		-	-		-
9			-			-		-	-		-
10			-			-		-	-		-
11						-		-	-		-
12			-			-		-	-		-
*Top la	yer only, fi	rstblownotine	cluded						DPI5 ¹	[mm/blow]	37.45
									E ¹	[MPa]	23.83
									DPI5 ²	[mm/blow]	N/A
									E ²	[MPa]	N/A

I - 1

Dyna	mic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	100%	75.4%	99.2%	1
Dept	n of cone bel	ow surface at	start [mm]:		8						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blov	v Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	8.0	0.0	8.0								
1	26.0	18.0	26.0	17.0	18.0	324.0					
2	37.0	29.0	37.0	31.5	11.0	121.0		11.0	11.0		
3	45.0	37.0	45.0	41.0	8.0	64.0	13.8	9.5	9.7	9.5	76.0
4	56.0	48.0	56.0	50.5	11.0	121.0	10.2	10.0	10.2	9.5	104.5
5	67.0	59.0	67.0	61.5	11.0	121.0	10.2	10.3	10.4	11.0	121.0
6	78.0	70.0	78.0	72.5	11.0	121.0	11.0	10.4	10.5	11.0	121.0
7	90.0	82.0	90.0	84.0	12.0	144.0	11.4	10.7	10.8	11.5	138.0
8	100.0	92.0	100.0	95.0	10.0	100.0	11.1	10.6	10.7	11.0	110.0
9	112.0	104.0	112.0	106.0	12.0	144.0	11.4	10.8	10.9	11.0	132.0
10	122.0	114.0	122.0	117.0	10.0	100.0	10.8	10.7	10.8	11.0	110.0
11	134.5	126.5	134.5	128.3	12.5	156.3	11.6	10.9	11.0	11.3	140.6
12	147.0	139.0	147.0	140.8	12.5	156.3	11.8	11.0	11.1	12.5	156.3
13	158.0	150.0	158.0	152.5	11.0	121.0	12.0	11.0	11.1		
14	173.0	165.0	173.0	165.5	15.0	225.0	13.0	11.3	11.5		
15	187.0	179.0	187.0	180.0	14.0	196.0	13.6	11.5	11.7		
16	199.0	191.0	199.0	193.0	12.0	144.0	13.8	11.5	11.8		
17	213.0	205.0	213.0	206.0	14.0	196.0	13.4	11.7	11.9		
18	224.0	216.0	224.0	218.5	11.0	121.0	12.5	11.6	11.9		
19	239.0	231.0	239.0	231.5	15.0	225.0	13.6	11.8	12.1		
20	253.0	245.0	253.0	246.0	14.0	196.0	13.6	11.9	12.2		
21	269.5	261.5	269.5	261.3	16.5	272.3	15.2	12.2	12.5		
22	282.0	274.0	282.0	275.8	12.5	156.3	14.5	12.2	12.5		
*Top	layer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	10.58
									E1	[MPa]	91.23
									DPI5 ²	[mm/blow]	11.38
									F ²	[MPa]	84 37

namic Cone Penetrometer	Soil	Target	Actual	Actual	Trial
	Origin	Density	Moisture	Desnity	No.
	MnROAD	100%	75.4%	99.2%	2

Depth of	of cone bel	ow surface at	start [mm]:		7						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	7.0	0.0	7.0								
1	25.0	18.0	25.0	16.0	18.0	324.0					
2	35.0	28.0	35.0	30.0	10.0	100.0		10.0	10.0		
3	45.0	38.0	45.0	40.0	10.0	100.0	13.8	10.0	10.0	10.0	100.0
4	57.0	50.0	57.0	51.0	12.0	144.0	10.8	10.7	10.8	11.0	132.0
5	66.0	59.0	66.0	61.5	9.0	81.0	10.5	10.3	10.4	10.5	94.5
6	77.0	70.0	77.0	71.5	11.0	121.0	10.8	10.4	10.5	10.0	110.0
7	90.0	83.0	90.0	83.5	13.0	169.0	11.2	10.8	11.0	12.0	156.0
8	100.0	93.0	100.0	95.0	10.0	100.0	11.5	10.7	10.9	11.5	115.0
9	112.0	105.0	112.0	106.0	12.0	144.0	11.8	10.9	11.0	11.0	132.0
10	125.0	118.0	125.0	118.5	13.0	169.0	11.8	11.1	11.3	12.5	162.5
11	136.0	129.0	136.0	130.5	11.0	121.0	12.1	11.1	11.3	12.0	132.0
12	148.0	141.0	148.0	142.0	12.0	144.0	12.1	11.2	11.3	11.5	138.0
13	160.0	153.0	160.0	154.0	12.0	144.0	11.7	11.3	11.4		
14	172.0	165.0	172.0	166.0	12.0	144.0	12.0	11.3	11.4		
15	183.0	176.0	183.0	177.5	11.0	121.0	11.7	11.3	11.4		
16	196.0	189.0	196.0	189.5	13.0	169.0	12.1	11.4	11.5		
17	208.0	201.0	208.0	202.0	12.0	144.0	12.1	11.4	11.6		
18	223.0	216.0	223.0	215.5	15.0	225.0	13.5	11.6	11.8		
19	236.0	229.0	236.0	229.5	13.0	169.0	13.5	11.7	11.9		
20	250.0	243.0	250.0	243.0	14.0	196.0	14.0	11.8	12.0		
21	264.0	257.0	264.0	257.0	14.0	196.0	13.7	12.0	12.1		
22	277.0	270.0	277.0	270.5	13.0	169.0	13.7	12.0	12.2		
23	289.0	282.0	289.0	283.0	12.0	144.0	13.1	12.0	12.2		
*Top la	iyer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	10.77
									E ¹	[MPa]	89.45

 PI5²
 [mm/blow]
 11.72

 ²
 [MPa]
 81.83

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	100%	71.5%	93.5%	1
Depth	of cone bel	ow surface at	start [mm]:		7						
		Cone	Total	Average		2	Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth		2 2	Average DPI				2 2
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm²/blow²]
0	7.0	0.0	7.0								
1	21.0	14.0	21.0	14.0	14.0	196.0					
2	28.0	21.0	28.0	24.5	7.0	49.0		7.0	7.0		
3	35.0	28.0	35.0	31.5	7.0	49.0	10.5	7.0	7.0	7.0	49.0
4	40.0	33.0	40.0	37.5	5.0	25.0	6.5	6.3	6.5	6.0	30.0
5	47.0	40.0	47.0	43.5	7.0	49.0	6.5	6.5	6.6	6.0	42.0
6	55.0	48.0	55.0	51.0	8.0	64.0	6.9	6.8	6.9	7.5	60.0
7	59.0	52.0	59.0	57.0	4.0	16.0	6.8	6.3	6.6	6.0	24.0
8	67.0	60.0	67.0	63.0	8.0	64.0	7.2	6.6	6.9	6.0	48.0
9	75.0	68.0	75.0	71.0	8.0	64.0	7.2	6.8	7.0	8.0	64.0
10	80.0	73.0	80.0	77.5	5.0	25.0	7.3	6.6	6.9	6.5	32.5
11	89.0	82.0	89.0	84.5	9.0	81.0	7.7	6.8	7.1	7.0	63.0
12	95.0	88.0	95.0	92.0	6.0	36.0	7.1	6.7	7.1	7.5	45.0
13	102.0	95.0	102.0	98.5	7.0	49.0	7.5	6.8	7.0		
14	109.0	102.0	109.0	105.5	7.0	49.0	6.7	6.8	7.0		
15	117.0	110.0	117.0	113.0	8.0	64.0	7.4	6.9	7.1		
16	123.0	116.0	123.0	120.0	6.0	36.0	7.1	6.8	7.1		
17	131.0	124.0	131.0	127.0	8.0	64.0	7.5	6.9	7.1		
18	139.0	132.0	139.0	135.0	8.0	64.0	7.5	6.9	7.2		
19	147.0	140.0	147.0	143.0	8.0	64.0	8.0	7.0	7.2		
20	155.0	148.0	155.0	151.0	8.0	64.0	8.0	7.1	7.3		
21	164.0	157.0	164.0	159.5	9.0	81.0	8.4	7.2	7.4		
22	172.0	165.0	172.0	168.0	8.0	64.0	8.4	7.2	7.4		
23	180.0	173.0	180.0	176.0	8.0	64.0	8.4	7.2	7.5		
24	189.0	182.0	189.0	184.5	9.0	81.0	8.4	7.3	7.5		
25	202.0	195.0	202.0	195.5	13.0	169.0	10.5	7.5	7.9		
26	210.0	203.0	210.0	206.0	8.0	64.0	10.5	7.6	7.9		
27	219.0	212.0	219.0	214.5	9.0	81.0	10.5	7.6	8.0		
28	228.0	221.0	228.0	223.5	9.0	81.0	8.7	7.7	8.0		
29	236.0	229.0	236.0	232.0	8.0	64.0	8.7	7.7	8.0		
30	244.0	237.0	244.0	240.0	8.0	64.0	8.4	7.7	8.0		
31	255.0	248.0	255.0	249.5	11.0	121.0	9.2	7.8	8.2		
32	263.0	256.0	263.0	259.0	8.0	64.0	9.2	7.8	8.2		
33	270.0	263.0	270.0	266.5	7.0	49.0	9.0	7.8	8.1		
*Top la	iyer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	6.61
									E ¹	[MPa]	150,18

E ¹	[MPa]	150.18
DPI5 ²	[mm/blow]	7.01
E ²	[MPa]	141.08

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
Dopth	of cono boli	ow surface at	etart [mm]:		4		MnROAD	100%	71.5%	93.5%	2
Depuir		Cone	Total	Average	4		Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
	Ũ	From Start	Depth	Depth			Average DPI	ů,	0		Ũ
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	4.0	0.0	4.0								
1	19.0	15.0	19.0	11.5	15.0	225.0					
2	29.0	25.0	29.0	24.0	10.0	100.0		10.0	10.0		
3	36.0	32.0	36.0	32.5	7.0	49.0	11.7	8.5	8.8	8.5	59.5
4	42.0	38.0	42.0	39.0	6.0	36.0	8.0	7.7	8.0	6.5	39.0
5	47.0 55.0	43.0	47.0	44.5 51.0	5.0	25.0	6.1	7.0	7.5	5.5	27.5
7	62 0	58.0	62 0	58.5	0.0 7.0	49.0	6.9	7.2	7.0	0.5 7.5	52.0
8	70.0	66.0	70.0	66.0	8.0	64.0	7.7	7.3	7.6	7.5	60.0
9	76.0	72.0	76.0	73.0	6.0	36.0	7.1	7.1	7.4	7.0	42.0
10	83.0	79.0	83.0	79.5	7.0	49.0	7.1	7.1	7.4	6.5	45.5
11	88.0	84.0	88.0	85.5	5.0	25.0	6.1	6.9	7.2	6.0	30.0
12	95.0	91.0	95.0	91.5	7.0	49.0	6.5	6.9	7.2	6.0	42.0
13	102.0	98.0	102.0	98.5	7.0	49.0	6.5	6.9	7.2		
14	110.0	106.0	110.0	106.0	8.0	64.0	7.4	7.0	7.2		
15	117.0	113.0	117.0	113.5	7.0	49.0	7.4	7.0	7.2		
16	124.0	120.0	124.0	120.5	7.0	49.0	7.4	7.0	7.2		
17	130.0	126.0	130.0	127.0	6.0	36.0	b./ 7.1	6.9	7.1		
10	130.0	1/3.0	130.0	1/2 5	0.0	04.0 81.0	7.1	7.0	7.2		
20	155.0	151.0	155.0	151.0	8.0	64.0	8.4	7.2	7.4		
21	163.0	159.0	163.0	159.0	8.0	64.0	8.4	7.2	7.4		
22	171.0	167.0	171.0	167.0	8.0	64.0	8.0	7.2	7.4		
23	179.0	175.0	179.0	175.0	8.0	64.0	8.0	7.3	7.5		
24	188.0	184.0	188.0	183.5	9.0	81.0	8.4	7.3	7.5		
25	197.0	193.0	197.0	192.5	9.0	81.0	8.7	7.4	7.6		
26	205.0	201.0	205.0	201.0	8.0	64.0	8.7	7.4	7.6		
27	213.0	209.0	213.0	209.0	8.0	64.0	8.4	7.5	7.6		
28	221.0	217.0	221.0	217.0	8.0	64.0 91.0	8.0	7.5 7.5	1.1		
29	230.0	220.0	230.0	220.0	9.0	81.0 81.0	8.4 9.7	7.5	7.7		
31	239.0	233.0	239.0	234.5	9.0	81.0	9.0	7.6	7.8		
32	256.0	252.0	256.0	252.0	8.0	64.0	8.7	7.6	7.8		
33	266.0	262.0	266.0	261.0	10.0	100.0	9.1	7.7	7.9		
34	272.0	268.0	272.0	269.0	6.0	36.0	8.3	7.7	7.9		
*Top la	yer only, fir	st blow not in	cluded						DPI5 ¹	[mm/blow]	6.98
									E	[MPa]	141.70
									DPI5 ²	[mm/blow]	6.65
									E	[MPa]	149.25

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	105%	92.5%	103.2%	1
Depth	of cone bel	ow surface at	start [mm]:		5						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	5.0	0.0	5.0								
1	26.0	21.0	26.0	15.5	21.0	441.0					
2	39.0	34.0	39.0	32.5	13.0	169.0		13.0	13.0		
3	51.0	46.0	51.0	45.0	12.0	144.0	16.4	12.5	12.5	12.5	150.0
4	65.0	60.0	65.0	58.0	14.0	196.0	13.1	13.0	13.1	13.0	182.0
5	80.0	75.0	80.0	72.5	15.0	225.0	13.8	13.5	13.6	14.5	217.5
6	92.0	87.0	92.0	86.0	12.0	144.0	13.8	13.2	13.3	13.5	162.0
7	105.0	100.0	105.0	98.5	13.0	169.0	13.5	13.2	13.3	12.5	162.5
8	117.0	112.0	117.0	111.0	12.0	144.0	12.4	13.0	13.1	12.5	150.0
9	123.0	118.0	123.0	120.0	6.0	36.0	11.3	12.1	12.6	9.0	54.0
10	135.0	130.0	135.0	129.0	12.0	144.0	10.8	12.1	12.6	9.0	108.0
11	145.5	140.5	145.5	140.3	10.5	110.3	10.2	12.0	12.4	11.3	118.1
12	157.5	152.5	157.5	151.5	12.0	144.0	11.5	12.0	12.4	11.3	135.0
13	172.0	167.0	172.0	164.8	14.5	210.3	12.6	12.2	12.6		
14	184.5	179.5	184.5	178.3	12.5	156.3	13.1	12.2	12.6		
15	201.0	196.0	201.0	192.8	16.5	272.3	14.7	12.5	12.9		
16	211.0	206.0	211.0	206.0	10.0	100.0	13.6	12.3	12.8		
17	225.5	220.5	225.5	218.3	14.5	210.3	14.2	12.5	12.9		
18	240.5	235.5	240.5	233.0	15.0	225.0	13.6	12.6	13.1		
19	255.0	250.0	255.0	247.8	14.5	210.3	14.7	12.7	13.1		
20	267.0	262.0	267.0	261.0	12.0	144.0	14.0	12.7	13.1		
*Top la	ayer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	13.24
									E ¹	[MPa]	71.85
									DPI5 ²	[mm/blow]	10.76
									E ²	[MPa]	89.53

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	105%	92.5%	103.2%	2
Depth	of cone bel	ow surface at	start [mm]:	-	2.5						
		Cone	Total	Average		2	Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	2.5	0.0	2.5								
1	26.0	23.5	26.0	14.3	23.5	552.3					
2	39.0	36.5	39.0	32.5	13.0	169.0		13.0	13.0		
3	50.0	47.5	50.0	44.5	11.0	121.0	17.7	12.0	12.1	12.0	132.0
4	61.0	58.5	61.0	55.5	11.0	121.0	11.7	11.7	11.7	11.0	121.0
5	75.0	72.5	75.0	68.0	14.0	196.0	12.2	12.3	12.4	12.5	175.0
6	88.0	85.5	88.0	81.5	13.0	169.0	12.8	12.4	12.5	13.5	175.5
7	99.0	96.5	99.0	93.5	11.0	121.0	12.8	12.2	12.3	12.0	132.0
8	108.0	105.5	108.0	103.5	9.0	81.0	11.2	11.7	11.9	10.0	90.0
9	118.5	116.0	118.5	113.3	10.5	110.3	10.2	11.6	11.8	9.8	102.4
10	130.0	127.5	130.0	124.3	11.5	132.3	10.4	11.6	11.7	11.0	126.5
11	141.0	138.5	141.0	135.5	11.0	121.0	11.0	11.5	11.7	11.3	123.8
12	155.0	152.5	155.0	148.0	14.0	196.0	12.3	11.7	11.9	12.5	175.0
13	163.0	160.5	163.0	159.0	8.0	64.0	11.5	11.4	11.7		
14	178.0	175.5	178.0	170.5	15.0	225.0	13.1	11.7	12.0		
15	187.5	185.0	187.5	182.8	9.5	90.3	11.7	11.5	11.9		
16	197.5	195.0	197.5	192.5	10.0	100.0	12.0	11.4	11.8		
17	210.5	208.0	210.5	204.0	13.0	169.0	11.1	11.5	11.8		
18	223.0	220.5	223.0	216.8	12.5	156.3	12.0	11.6	11.9		
19	235.0	232.5	235.0	229.0	12.0	144.0	12.5	11.6	11.9		
20	251.0	248.5	251.0	243.0	16.0	256.0	13.7	11.8	12.2		
21	266.0	263.5	266.0	258.5	15.0	225.0	14.5	12.0	12.4		
22	278.5	276.0	278.5	272.3	12.5	156.3	14.6	12.0	12.4		

*Top layer only, first blow not included

 IZ.4
 Imm/blow]
 12.26

 DPI5¹
 [mm/blow]
 12.26

 E¹
 [MPa]
 77.99

 DPI5²
 [mm/blow]
 11.03

 E²
 [MPa]
 87.25

Dynam	iic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	105%	73.4%	98.8%	1
Depth	of cone bel	ow surface at	start [mm]:		5			1	1		
		Cone	Total	Average		2	Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	5.0	0.0	5.0								
1	20.0	15.0	20.0	12.5	15.0	225.0					
2	30.0	25.0	30.0	25.0	10.0	100.0		10.0	10.0		
3	40.0	35.0	40.0	35.0	10.0	100.0	12.1	10.0	10.0	10.0	100.0
4	47.0	42.0	47.0	43.5	7.0	49.0	9.2	9.0	9.2	8.5	59.5
5	57.0	52.0	57.0	52.0	10.0	100.0	9.2	9.3	9.4	8.5	85.0
6	63.0	58.0	63.0	60.0	6.0	36.0	8.0	8.6	9.0	8.0	48.0
7	70.0	65.0	70.0	66.5	7.0	49.0	8.0	8.3	8.7	6.5	45.5
8	80.0	75.0	80.0	75.0	10.0	100.0	8.0	8.6	8.9	8.5	85.0
9	88.0	83.0	88.0	84.0	8.0	64.0	8.5	8.5	8.8	9.0	72.0
10	98.0	93.0	98.0	93.0	10.0	100.0	9.4	8.7	8.9	9.0	90.0
11	104.0	99.0	104.0	101.0	6.0	36.0	8.3	8.4	8.7	8.0	48.0
12	112.0	107.0	112.0	108.0	8.0	64.0	8.3	8.4	8.7	7.0	56.0
13	122.0	117.0	122.0	117.0	10.0	100.0	8.3	8.5	8.8		
14	129.0	124.0	129.0	125.5	7.0	49.0	8.5	8.4	8.7		
15	136.0	131.0	136.0	132.5	7.0	49.0	8.3	8.3	8.6		
16	145.0	140.0	145.0	140.5	9.0	81.0	7.8	8.3	8.6		
17	155.0	150.0	155.0	150.0	10.0	100.0	8.8	8.4	8.7		
18	163.0	158.0	163.0	159.0	8.0	64.0	9.1	8.4	8.7		
19	176.0	171.0	176.0	169.5	13.0	169.0	10.7	8.7	9.0		
20	185.0	180.0	185.0	180.5	9.0	81.0	10.5	8.7	9.0		
21	193.0	188.0	193.0	189.0	8.0	64.0	10.5	8.7	9.0		
22	204.0	199.0	204.0	198.5	11.0	121.0	9.5	8.8	9.1		
23	214.0	209.0	214.0	209.0	10.0	100.0	9.8	8.8	9.2		
24	222.0	217.0	222.0	218.0	8.0	64.0	9.8	8.8	9.1		
25	233.0	228.0	233.0	227.5	11.0	121.0	9.8	8.9	9.2		
26	243.0	238.0	243.0	238.0	10.0	100.0	9.8	8.9	9.2		
27	254.0	249.0	254.0	248.5	11.0	121.0	10.7	9.0	9.3		
28	265.0	260.0	265.0	259.5	11.0	121.0	10.7	9.1	9.4		
29	275.0	270.0	275.0	270.0	10.0	100.0	10.7	9.1	9.4		
*Top la	ayer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	8.45
									E ¹	[MPa]	115.76
									DPI5 ²	[mm/blow]	8.36

117.13 E^2 [MPa]

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	105%	73.4%	98.8%	2
Depth	of cone bel	ow surface at	start [mm]:	-	5						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
_	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	5.0	0.0	5.0								
1	23.0	18.0	23.0	14.0	18.0	324.0					
2	30.0	25.0	30.0	26.5	7.0	49.0		7.0	7.0		
3	36.0	31.0	36.0	33.0	6.0	36.0	13.2	6.5	6.5	6.5	39.0
4	43.0	38.0	43.0	39.5	7.0	49.0	6.7	6.7	6.7	6.5	45.5
5	50.0	45.0	50.0	46.5	7.0	49.0	6.7	6.8	6.8	7.0	49.0
6	59.0	54.0	59.0	54.5	9.0	81.0	7.8	7.2	7.3	8.0	72.0
7	67.0	62.0	67.0	63.0	8.0	64.0	8.1	7.3	7.5	8.5	68.0
8	73.0	68.0	73.0	70.0	6.0	36.0	7.9	7.1	7.3	7.0	42.0
9	82.0	77.0	82.0	77.5	9.0	81.0	7.9	7.4	7.5	7.5	67.5
10	88.0	83.0	88.0	85.0	6.0	36.0	7.3	7.2	7.4	7.5	45.0
11	95.0	90.0	95.0	91.5	7.0	49.0	7.5	7.2	7.4	6.5	45.5
12	102.0	97.0	102.0	98.5	7.0	49.0	6.7	7.2	7.3	7.0	49.0
13	108.0	103.0	108.0	105.0	6.0	36.0	6.7	7.1	7.2		
14	117.0	112.0	117.0	112.5	9.0	81.0	7.5	7.2	7.4		
15	125.0	120.0	125.0	121.0	8.0	64.0	7.9	7.3	7.5		
16	133.0	128.0	133.0	129.0	8.0	64.0	8.4	7.3	7.5		
17	140.0	135.0	140.0	136.5	7.0	49.0	7.7	7.3	7.5		
18	149.0	144.0	149.0	144.5	9.0	81.0	8.1	7.4	7.6		
19	159.0	154.0	159.0	154.0	10.0	100.0	8.8	7.6	7.8		
20	167.0	162.0	167.0	163.0	8.0	64.0	9.1	7.6	7.8		
21	175.0	170.0	175.0	171.0	8.0	64.0	8.8	7.6	7.8		
22	184.0	179.0	184.0	179.5	9.0	81.0	8.4	7.7	7.8		
23	193.0	188.0	193.0	188.5	9.0	81.0	8.7	7.7	7.9		
24	200.0	195.0	200.0	196.5	7.0	49.0	8.4	7.7	7.9		
25	209.0	204.0	209.0	204.5	9.0	81.0	8.4	7.8	7.9		
26	218.0	213.0	218.0	213.5	9.0	81.0	8.4	7.8	8.0		
27	227.0	222.0	227.0	222.5	9.0	81.0	9.0	7.8	8.0		
28	236.0	231.0	236.0	231.5	9.0	81.0	9.0	7.9	8.1		
29	245.0	240.0	245.0	240.5	9.0	81.0	9.0	7.9	8.1		
30	254.0	249.0	254.0	249.5	9.0	81.0	9.0	8.0	8.1		
31	262.0	257.0	262.0	258.0	8.0	64.0	8.7	8.0	8.1		
32	272.0	267.0	272.0	267.0	10.0	100.0	9.1	8.0	8.2		
*Top la	ver only fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	7.39
	., o,, in								E ¹	[MPa]	133.43
									2	[0]	100.40

 E'
 [MPa]
 133.43

 DPI5²
 [mm/blow]
 7.11

 E²
 [MPa]
 138.97

Dynamic Cone Penetrometer							Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	105%	50.5%	98.3%	1
Depth of	of cone bel	ow surface at	start [mm]:		5						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth		2 2	Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm²/blow²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm²/blow²]
0	5.0	0.0	5.0								
1	15.0	10.0	15.0	10.0	10.0	100.0					
2	22.0	17.0	22.0	18.5	7.0	49.0		7.0	7.0		
3	27.0	22.0	27.0	24.5	5.0	25.0	7.9	6.0	6.2	6.0	30.0
4	30.0	25.0	30.0	28.5	3.0	9.0	5.5	5.0	5.5	4.0	12.0
5	34.0	29.0	34.0	32.0	4.0	16.0	4.2	4.8	5.2	3.5	14.0
0	38.0	33.0	38.0	30.0	4.0	16.0	3.7	4.0	5.0	4.0	16.0
'	44.0	39.0	44.0	41.0	6.U	36.0	4.9	4.8	5.2	5.0	30.0
å	49.0	44.0	49.0	40.0	5.0	25.0	5.1 5.4	4.9	5.2	5.5	27.5
10	59.0	49.0 53.0	59.0	56.0	1.0	25.0 16.0	J.4 4 7	4.5	5.0	1.5	18.0
11	63.0	58.0	63.0	50.0 60.5	4.0 5.0	25.0	4.7	4.0	5.0	4.5	22.5
12	67.0	62.0	67.0	65.0	4.0	25.0 16.0	4.7	4.8	5.0	4.5	18.0
13	72.0	67.0	72.0	69.5	5.0	25.0	4.7	4.8	5.0		
14	77.0	72.0	77.0	74.5	5.0	25.0	47	4.8	5.0		
15	83.0	78.0	83.0	80.0	6.0	36.0	5.4	4.9	5.1		
16	85.0	80.0	85.0	84.0	2.0	4.0	5.0	4.7	5.0		
17	90.0	85.0	90.0	87.5	5.0	25.0	5.0	4.7	5.0		
18	96.0	91.0	96.0	93.0	6.0	36.0	5.0	4.8	5.0		
19	100.0	95.0	100.0	98.0	4.0	16.0	5.1	4.7	5.0		
20	106.0	101.0	106.0	103.0	6.0	36.0	5.5	4.8	5.1		
21	109.0	104.0	109.0	107.5	3.0	9.0	4.7	4.7	5.0		
22	115.0	110.0	115.0	112.0	6.0	36.0	5.4	4.8	5.1		
23	120.0	115.0	120.0	117.5	5.0	25.0	5.0	4.8	5.1		
24	125.0	120.0	125.0	122.5	5.0	25.0	5.4	4.8	5.1		
25	129.0	124.0	129.0	127.0	4.0	16.0	4.7	4.8	5.0		
26	135.0	130.0	135.0	132.0	6.0	36.0	5.1	4.8	5.1		
27	140.0	135.0	140.0	137.5	5.0	25.0	5.1	4.8	5.1		
28	144.0	139.0	144.0	142.0	4.0	16.0	5.1	4.8	5.0		
29	149.0	144.0	149.0	146.5	5.0	25.0	4.7	4.8	5.0		
30	154.0	149.0	154.0	151.5	5.0	25.0	4.7	4.8	5.0		
31	160.0	155.0	160.0	157.0	6.0	36.0	5.4	4.8	5.1		
32	167.0	162.0	167.0	163.5	7.0	49.0	6.1	4.9	5.2		
33	171.0	100.0	171.0	109.0	4.0	16.0	5.9	4.9	5.1		
34	192.0	170.0	192.0	179.5	7.0	10.0	5.4	4.0	5.1		
35	192.0	183.0	192.0	195.0	6.0	49.0	5.9	4.9	5.2		
37	192.0	187.0	192.0	190.0	4.0	16.0	5.9	4.9	5.2		
38	197.0	192.0	197.0	194.5	5.0	25.0	5.0	4.9	5.2		
39	201.0	196.0	201.0	199.0	4.0	16.0	4.4	4.9	5.2		
40	207.0	202.0	207.0	204.0	6.0	36.0	5.1	4.9	5.2		
41	209.0	204.0	209.0	208.0	2.0	4.0	4.7	4.9	5.1		
42	218.0	213.0	218.0	213.5	9.0	81.0	7.1	5.0	5.3		
43	224.0	219.0	224.0	221.0	6.0	36.0	7.1	5.0	5.3		
44	228.0	223.0	228.0	226.0	4.0	16.0	7.0	5.0	5.3		
45	234.0	229.0	234.0	231.0	6.0	36.0	5.5	5.0	5.3		
46	240.0	235.0	240.0	237.0	6.0	36.0	5.5	5.0	5.3		
47	245.0	240.0	245.0	242.5	5.0	25.0	5.7	5.0	5.3		
48	250.0	245.0	250.0	247.5	5.0	25.0	5.4	5.0	5.3		
49	255.0	250.0	255.0	252.5	5.0	25.0	5.0	5.0	5.3		
50	260.0	255.0	260.0	257.5	5.0	25.0	5.0	5.0	5.3		
51	266.0	261.0	266.0	263.0	6.0	36.0	5.4	5.0	5.3		
52	270.0	265.0	270.0	268.0	4.0	16.0	5.1	5.0	5.3		
*Top la	yer only, fi	rst blow not in	cluded						DPI5'	[mm/blow]	4.64

E ¹	[MPa]	218.94
DPI5 ²	[mm/blow]	4.83
E ²	[MPa]	209.81

Dynamic Cone Penetrometer							Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							MnROAD	105%	50.5%	98.3%	2
Depth of	of cone bel	ow surface at	start [mm]:		6						
Blow	Pooding	Cone	l otal	Average	DDI		I hree Blow	Non-Weighted	Weighted	Average	DPLX
DIOW	Reading	Depin From Start	Donth	Donth	DPI	DPI	Average DPI	Average DPI	Average DPI	DPI	Average DPI
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	Imm/blowl	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	6.0	0.0	60		[IIIII/DIOW]					[IIII1000W]	
1	19.0	13.0	19.0	12.5	13.0	169.0					
2	25.0	19.0	25.0	22.0	6.0	36.0		6.0	6.0		
3	29.0	23.0	29.0	27.0	4.0	16.0	9.6	5.0	5.2	5.0	20.0
4	34.0	28.0	34.0	31.5	5.0	25.0	5.1	5.0	5.1	4.5	22.5
5	38.0	32.0	38.0	36.0	4.0	16.0	4.4	4.8	4.9	4.5	18.0
6	42.0	36.0	42.0	40.0	4.0	16.0	4.4	4.6	4.7	4.0	16.0
7	48.0	42.0	48.0	45.0	6.0	36.0	4.9	4.8	5.0	5.0	30.0
8	52.0	46.0	52.0	50.0	4.0	16.0	4.9	4.7	4.9	5.0	20.0
9	56.0	50.0	56.0	54.0	4.0	16.0	4.9	4.6	4.8	4.0	16.0
10	62.0	56.0	62.0	59.0	6.0	36.0	4.9	4.8	5.0	5.0	30.0
11	65.0	59.0	65.0	63.5	3.0	9.0	4.7	4.6	4.8	4.5	13.5
12	70.0	69.0	70.0	72.0	5.0	25.0	5.0	4.0	4.0	4.0	20.0
14	74.0 80.0	74.0	80.0	72.0	4.0 6.0	36.0	4.2	4.6	4.0		
14	85.0	79.0	85.0	82.5	5.0	25.0	5.1	4.7	4.9		
16	89.0	83.0	89.0	87.0	4.0	16.0	5.1	4.7	4.9		
17	95.0	89.0	95.0	92.0	6.0	36.0	5.1	4.8	4.9		
18	97.0	91.0	97.0	96.0	2.0	4.0	4.7	4.6	4.9		
19	101.0	95.0	101.0	99.0	4.0	16.0	4.7	4.6	4.8		
20	107.0	101.0	107.0	104.0	6.0	36.0	4.7	4.6	4.9		
21	111.0	105.0	111.0	109.0	4.0	16.0	4.9	4.6	4.9		
22	115.0	109.0	115.0	113.0	4.0	16.0	4.9	4.6	4.8		
23	120.0	114.0	120.0	117.5	5.0	25.0	4.4	4.6	4.8		
24	125.0	119.0	125.0	122.5	5.0	25.0	4.7	4.6	4.8		
25	130.0	124.0	130.0	127.5	5.0	25.0	5.0	4.6	4.9		
26	135.0	129.0	135.0	132.5	5.0	25.0	5.0	4.6	4.9		
27	140.0	134.0	140.0	137.5	5.0	25.0	5.0	4.7	4.9		
20	145.0	139.0	145.0	142.5	5.0	25.0	5.0	4.7	4.9		
30	155.0	144.0	155.0	147.5	5.0	25.0	5.0	4.7	4.9		
31	160.0	154.0	160.0	157.5	5.0	25.0	5.0	4.7	4.9		
32	165.0	159.0	165.0	162.5	5.0	25.0	5.0	4.7	4.9		
33	170.0	164.0	170.0	167.5	5.0	25.0	5.0	4.7	4.9		
34	174.0	168.0	174.0	172.0	4.0	16.0	4.7	4.7	4.9		
35	178.0	172.0	178.0	176.0	4.0	16.0	4.4	4.7	4.8		
36	184.0	178.0	184.0	181.0	6.0	36.0	4.9	4.7	4.9		
37	188.0	182.0	188.0	186.0	4.0	16.0	4.9	4.7	4.9		
38	193.0	187.0	193.0	190.5	5.0	25.0	5.1	4.7	4.9		
39	198.0	192.0	198.0	195.5	5.0	25.0	4.7	4.7	4.9		
40	204.0	198.0	204.0	201.0	6.0	36.0	5.4	4.7	4.9		
41	209.0	203.0	209.0	206.5	5.0	25.0	5.4	4.8	4.9		
42	215.0	209.0	215.0	212.0	6.0	36.0	5.7	4.8	4.9		
43	219.0	213.0	219.0	217.0	4.0	16.0	4 9	4.0	4.9		
45	223.0	221.0	223.0	225.0	4.0	16.0	4.0	47	49		
46	232.0	226.0	232.0	229.5	5.0	25.0	4.4	4.7	4.9		
47	237.0	231.0	237.0	234.5	5.0	25.0	4.7	4.7	4.9		
48	244.0	238.0	244.0	240.5	7.0	49.0	5.8	4.8	5.0		
49	248.0	242.0	248.0	246.0	4.0	16.0	5.6	4.8	4.9		
50	253.0	247.0	253.0	250.5	5.0	25.0	5.6	4.8	4.9		
51	258.0	252.0	258.0	255.5	5.0	25.0	4.7	4.8	4.9		
52	262.0	256.0	262.0	260.0	4.0	16.0	4.7	4.8	4.9		
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	4.63
										10 40 - 1	040.04

E ¹	[MPa]	219.24
DPI5 ²	[mm/blow]	4.52
E ²	[MPa]	224.79

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
Dynan							Origin	Density	Moisture	Desnity	No
							Duluth	103%	88.2%	102.7%	1
Depth	of cone hel	ow surface at	start [mm]·		11	ļ	Duluit	10070	00.270	102.170	•
Dopun		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	
Blow	Reading	Denth	Cone	Cone	ΠΡΙ		Weighted	Average DPI*	Average DPI*	DPI	
DIOW	rteading	Erom Stort	Donth	Donth	DIT	DIT	Average DPI	Average DI 1	Average Di 1	DIT	Average Di 1
-	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	Average DFT	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
	11.0	[[1][1]	11.0	liinii			[IIIII/biow]	[IIIII/DIOW]	[mm/biow]	[IIIII/blow]	
	11.0	0.0	11.0								
1	45.0	34.0	45.0	28.0	34.0	1156.0					
2	79.0	68.0	79.0	62.0	34.0	1156.0		34.0	34.0		
3	112.0	101.0	112.0	95.5	33.0	1089.0	33.7	33.5	33.5	33.5	1105.5
4	144.0	133.0	144.0	128.0	32.0	1024.0	33.0	33.0	33.0	32.5	1040.0
5	179.0	168.0	179.0	161.5	35.0	1225.0	33.4	33.5	33.5	33.5	1172.5
6	217.0	206.0	217.0	198.0	38.0	1444.0	35.2	34.4	34.5	36.5	1387.0
7	255.0	244.0	255.0	236.0	38.0	1444.0	37.1	35.0	35.2	38.0	1444.0
8	290.0	279.0	290.0	272.5	35.0	1225.0	37.1	35.0	35.1		
9											
10											
11											
12											
*Top la	yer only, fi	rst blow not in	cluded					=	DPI5 ¹	[mm/blow]	34.94
									E ¹	[MPa]	25.65
									DPI5 ²	[mm/blow]	N/A
									E ²	[MPa]	N/A

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Duluth	103%	88.2%	102.7%	2
Depth	of cone bel	ow surface at	start [mm]:		9						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	9.0	0.0	9.0								
1	45.0	36.0	45.0	27.0	36.0	1296.0					
2	77.0	68.0	77.0	61.0	32.0	1024.0		32.0	32.0		
3	112.0	103.0	112.0	94.5	35.0	1225.0	34.4	33.5	33.6	33.5	1172.5
4	145.0	136.0	145.0	128.5	33.0	1089.0	33.4	33.3	33.4	34.0	1122.0
5	180.0	171.0	180.0	162.5	35.0	1225.0	34.4	33.8	33.8	34.0	1190.0
6	215.0	206.0	215.0	197.5	35.0	1225.0	34.4	34.0	34.0	35.0	1225.0
7	250.0	241.0	250.0	232.5	35.0	1225.0	35.0	34.2	34.2	35.0	1225.0
8	286.0	277.0	286.0	268.0	36.0	1296.0	35.3	34.4	34.5		
9											
10											
11											
12											
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	34.30
									E ¹	[MPa]	26.16
										[mm/blow]	NI/A

N/A

Dynamic Cone Penetrometer							Soil	Target	Actual	Actual	Trial
Dynan							Origin	Density	Moisture	Desnity	No
							Duluth	103%	71.8%	100.2%	1
Depth	of cone hel	ow surface at	etart [mm]		7		Duluti	10070	71.070	100.270	•
Deptit		Cone	Total	Average	,		Three Blow	Non-Weighted	Weighted	Average	
Blow	Reading	Denth	Cone	Cone	DPI		Weighted	Average DPI*		DPI	
BIOW	Reading	Erom Stort	Donth	Donth	DET	DET		Average DF1	Average DF1	DET	Average DF1
	[mm]	FIUIT Start	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	Average DFI	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
		[IIIII]		liinii	[IIIII/DIOW]		[IIIII/DIOW]	[IIIII/DIOW]	[mm/biow]	[IIIII/DIOW]	
	7.0	0.0	7.0								
1	40.0	33.0	40.0	23.5	33.0	1089.0					
2	70.0	63.0	70.0	55.0	30.0	900.0		30.0	30.0		
3	99.0	92.0	99.0	84.5	29.0	841.0	30.8	29.5	29.5	29.5	855.5
4	125.0	118.0	125.0	112.0	26.0	676.0	28.4	28.3	28.4	27.5	715.0
5	155.0	148.0	155.0	140.0	30.0	900.0	28.4	28.8	28.8	28.0	840.0
6	190.0	183.0	190.0	172.5	35.0	1225.0	30.8	30.0	30.3	32.5	1137.5
7	220.0	213.0	220.0	205.0	30.0	900.0	31.8	30.0	30.2	32.5	975.0
8	254.0	247.0	254.0	237.0	34.0	1156.0	33.1	30.6	30.8		
9											
10											
11											
12											
*Top la	yer only, fi	rst blow not in	cluded	-	-	-		-	DPI5 ¹	[mm/blow]	30.15
									E ¹	[MPa]	29.99
									DPI5 ²	[mm/blow]	N/A
									E ²	[MPa]	N/A

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Duluth	103%	71.8%	100.2%	2
Depth	of cone bel	ow surface at	start [mm]		10						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	37.0	27.0	37.0	23.5	27.0	729.0					
2	65.0	55.0	65.0	51.0	28.0	784.0		28.0	28.0		
3	93.0	83.0	93.0	79.0	28.0	784.0	27.7	28.0	28.0	28.0	784.0
4	117.0	107.0	117.0	105.0	24.0	576.0	26.8	26.7	26.8	26.0	624.0
5	140.0	130.0	140.0	128.5	23.0	529.0	25.2	25.8	26.0	23.5	540.5
6	170.0	160.0	170.0	155.0	30.0	900.0	26.0	26.6	26.9	26.5	795.0
7	195.0	185.0	195.0	182.5	25.0	625.0	26.3	26.3	26.6	27.5	687.5
8	223.0	213.0	223.0	209.0	28.0	784.0	27.8	26.6	26.8		
9	254.0	244.0	254.0	238.5	31.0	961.0	28.2	27.1	27.4		
10											
11											
12											
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	26.39
									E ¹	[MPa]	34.55
									DPI5 ²	[mm/blow]	N/A

N/A

F²

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
Dynam		netrometer					Origin	Donsity	Moisturo	Dospity	No
							Duluth	1029/		104.4%	1
Denth			- 4 4 - 5		10		Duluth	103%	00.1%	104.4%	I
Depth	of cone bel	ow surface at	start [mm]:		10						
		Cone	Total	Average		2	Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	40.0	30.0	40.0	25.0	30.0	900.0					
2	60.0	50.0	60.0	50.0	20.0	400.0		20.0	20.0		
3	80.0	70.0	80.0	70.0	20.0	400.0	24.3	20.0	20.0	20.0	400.0
4	99.0	89.0	99.0	89.5	19.0	361.0	19.7	19.7	19.7	19.5	370.5
5	115.0	105.0	115.0	107.0	16.0	256.0	18.5	18.8	18.9	17.5	280.0
6	137.0	127.0	137.0	126.0	22.0	484.0	19.3	19.4	19.6	19.0	418.0
7	155.0	145.0	155.0	146.0	18.0	324.0	19.0	19.2	19.3	20.0	360.0
8	170.0	160.0	170.0	162.5	15.0	225.0	18.8	18.6	18.8	16.5	247.5
9	183.0	173.0	183.0	176.5	13.0	169.0	15.6	17.9	18.3	14.0	182.0
10	195.0	185.0	195.0	189.0	12.0	144.0	13.5	17.2	17.8	12.5	150.0
11	210.0	200.0	210.0	202.5	15.0	225.0	13.5	17.0	17.6	13.5	202.5
12	224.0	214.0	224.0	217.0	14.0	196.0	13.8	16.7	17.3	14.5	203.0
*Top la	yer only, fi	rst blow not in	cluded	-				-	DPI5 ¹	[mm/blow]	19.25
									E ¹	[MPa]	48.31
									DPI5 ²	[mm/blow]	14.28
									E ²	[MPa]	66.34

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Duluth	103%	65.1%	104.4%	2
Depth	of cone bel	ow surface at	start [mm]:		6						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	6.0	0.0	6.0								
1	37.0	31.0	37.0	21.5	31.0	961.0					
2	58.0	52.0	58.0	47.5	21.0	441.0		21.0	21.0		
3	74.0	68.0	74.0	66.0	16.0	256.0	24.4	18.5	18.8	18.5	296.0
4	92.0	86.0	92.0	83.0	18.0	324.0	18.6	18.3	18.6	17.0	306.0
5	107.0	101.0	107.0	99.5	15.0	225.0	16.4	17.5	17.8	16.5	247.5
6	125.0	119.0	125.0	116.0	18.0	324.0	17.1	17.6	17.8	16.5	297.0
7	145.0	139.0	145.0	135.0	20.0	400.0	17.9	18.0	18.2	19.0	380.0
8	161.0	155.0	161.0	153.0	16.0	256.0	18.1	17.7	18.0	18.0	288.0
9	174.0	168.0	174.0	167.5	13.0	169.0	16.8	17.1	17.5	14.5	188.5
10	186.0	180.0	186.0	180.0	12.0	144.0	13.9	16.6	17.0	12.5	150.0
11	197.0	191.0	197.0	191.5	11.0	121.0	12.1	16.0	16.6	11.5	126.5
12	209.0	203.0	209.0	203.0	12.0	144.0	11.7	15.6	16.3	11.5	138.0
13	220.0	214.0	220.0	214.5	11.0	121.0	11.4	15.3	16.0		
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	17.55
									E ¹	[MPa]	53.29
									DPI5 ²	[mm/blow]	13.92
									E ²	[MPa]	68.13

Dynam	iic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Duluth	98%	97.6%	97.0%	1
Depth	of cone bel	low surface at	start [mm]:	:	7						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	7.0	0.0	7.0								
1	48.0	41.0	48.0	27.5	41.0	1681.0					
2	84.0	77.0	84.0	66.0	36.0	1296.0		36.0	36.0		
3	119.0	112.0	119.0	101.5	35.0	1225.0	37.5	35.5	35.5	35.5	1242.5
4	148.0	141.0	148.0	133.5	29.0	841.0	33.6	33.3	33.6	32.0	928.0
5	176.0	169.0	176.0	162.0	28.0	784.0	31.0	32.0	32.4	28.5	798.0
6	204.0	197.0	204.0	190.0	28.0	784.0	28.3	31.2	31.6	28.0	784.0
7	236.0	229.0	236.0	220.0	32.0	1024.0	29.5	31.3	31.7	30.0	960.0
8	267.0	260.0	267.0	251.5	31.0	961.0	30.4	31.3	31.6		
9	296.0	289.0	296.0	281.5	29.0	841.0	30.7	31.0	31.3		
10	309.0	302.0	309.0	302.5	13.0	169.0	27.0	29.0	30.4		
11											
12											
*Top la	yer only, fi	rst blow not in	cluded	-	-	-	-	-	DPI5 ¹	[mm/blow]	31.00
									E ¹	[MPa]	29.12
									DPI5 ²	[mm/blow]	N/A
									E ²	[MPa]	N/A

Dynam	nic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Duluth	98%	97.6%	97.0%	2
Depth	of cone bel	ow surface at	start [mm]:		17						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	17.0	0.0	17.0								
1	45.0	28.0	45.0	31.0	28.0	784.0					
2	79.0	62.0	79.0	62.0	34.0	1156.0		34.0	34.0		
3	112.0	95.0	112.0	95.5	33.0	1089.0	31.9	33.5	33.5	33.5	1105.5
4	138.0	121.0	138.0	125.0	26.0	676.0	31.4	31.0	31.4	29.5	767.0
5	169.0	152.0	169.0	153.5	31.0	961.0	30.3	31.0	31.3	28.5	883.5
6	199.0	182.0	199.0	184.0	30.0	900.0	29.2	30.8	31.1	30.5	915.0
7	227.0	210.0	227.0	213.0	28.0	784.0	29.7	30.3	30.6	29.0	812.0
8	259.0	242.0	259.0	243.0	32.0	1024.0	30.1	30.6	30.8		
9	287.0	270.0	287.0	273.0	28.0	784.0	29.5	30.3	30.5		
10	300.0	283.0	300.0	293.5	13.0	169.0	27.1	28.3	29.6		
11											
12											
*Top la	ayer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	30.29
									E ¹	[MPa]	29.85
									DPI5 ²	[mm/blow]	N/A

N/A

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Duluth	98%	82.2%	96.2%	1
Depth	of cone bel	ow surface at	start [mm]:		11						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	11.0	0.0	11.0								
1	25.0	14.0	25.0	18.0	14.0	196.0					
2	40.0	29.0	40.0	32.5	15.0	225.0		15.0	15.0		
3	53.0	42.0	53.0	46.5	13.0	169.0	14.0	14.0	14.1	14.0	182.0
4	65.0	54.0	65.0	59.0	12.0	144.0	13.5	13.3	13.5	12.5	150.0
5	80.0	69.0	80.0	72.5	15.0	225.0	13.5	13.8	13.9	13.5	202.5
6	96.0	85.0	96.0	88.0	16.0	256.0	14.5	14.2	14.4	15.5	248.0
7	109.0	98.0	109.0	102.5	13.0	169.0	14.8	14.0	14.1	14.5	188.5
8	117.0	106.0	117.0	113.0	8.0	64.0	13.2	13.1	13.6	10.5	84.0
9	131.0	120.0	131.0	124.0	14.0	196.0	12.3	13.3	13.7	11.0	154.0
10	145.0	134.0	145.0	138.0	14.0	196.0	12.7	13.3	13.7	14.0	196.0
11	157.0	146.0	157.0	151.0	12.0	144.0	13.4	13.2	13.5	13.0	156.0
12	170.0	159.0	170.0	163.5	13.0	169.0	13.1	13.2	13.5	12.5	162.5
13	183.0	172.0	183.0	176.5	13.0	169.0	12.7	13.2	13.5		
14	196.0	185.0	196.0	189.5	13.0	169.0	13.0	13.2	13.4		
15	210.0	199.0	210.0	203.0	14.0	196.0	13.4	13.2	13.5		
16	220.0	209.0	220.0	215.0	10.0	100.0	12.6	13.0	13.3		
17	235.0	224.0	235.0	227.5	15.0	225.0	13.4	13.1	13.4		
18	251.0	240.0	251.0	243.0	16.0	256.0	14.2	13.3	13.6		
19	264.0	253.0	264.0	257.5	13.0	169.0	14.8	13.3	13.6		
*Top la	ayer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	14.07
									E	[MPa]	67.36
									DPI5 ²	[mm/blow]	12.34
									F ²	[MPa]	77 47

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Duluth	98%	82.2%	96.2%	2
Depth	of cone bel	ow surface at	start [mm]:		9						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
_		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	9.0	0.0	9.0								
1	25.0	16.0	25.0	17.0	16.0	256.0					
2	39.0	30.0	39.0	32.0	14.0	196.0		14.0	14.0		
3	52.0	43.0	52.0	45.5	13.0	169.0	14.4	13.5	13.5	13.5	175.5
4	64.0	55.0	64.0	58.0	12.0	144.0	13.1	13.0	13.1	12.5	150.0
5	79.0	70.0	79.0	71.5	15.0	225.0	13.5	13.5	13.6	13.5	202.5
6	93.0	84.0	93.0	86.0	14.0	196.0	13.8	13.6	13.7	14.5	203.0
7	105.0	96.0	105.0	99.0	12.0	144.0	13.8	13.3	13.4	13.0	156.0
8	118.0	109.0	118.0	111.5	13.0	169.0	13.1	13.3	13.4	12.5	162.5
9	129.0	120.0	129.0	123.5	11.0	121.0	12.1	13.0	13.1	12.0	132.0
10	140.0	131.0	140.0	134.5	11.0	121.0	11.7	12.8	12.9	11.0	121.0
11	153.0	144.0	153.0	146.5	13.0	169.0	11.7	12.8	12.9	12.0	156.0
12	168.0	159.0	168.0	160.5	15.0	225.0	13.2	13.0	13.1	14.0	210.0
13	180.0	171.0	180.0	174.0	12.0	144.0	13.5	12.9	13.1		
14	193.0	184.0	193.0	186.5	13.0	169.0	13.5	12.9	13.0		
15	207.0	198.0	207.0	200.0	14.0	196.0	13.1	13.0	13.1		
16	222.0	213.0	222.0	214.5	15.0	225.0	14.0	13.1	13.3		
17	237.0	228.0	237.0	229.5	15.0	225.0	14.7	13.3	13.4		
18	252.0	243.0	252.0	244.5	15.0	225.0	15.0	13.4	13.5		
19	267.0	258.0	267.0	259.5	15.0	225.0	15.0	13.4	13.6		
*Tax la	1 6								D Duc1	r () 1 1	10.11

*Top layer only, first blow not included

70.73 12.40

77.01

[MPa] [mm/blow]

[MPa]

DPI5²

Dynam	Dynamic Cone Penetrometer						Soil	Target	Actual	Actual	Trial
							Duluth	Density		Desnity	110.
Dopth	of cono bol	ow surface at	etart [mm]:		0	l	Duluth	98%	60.9%	97.7%	I
Depin		Cono	Total	Avorago	9		Three Blow	Non-Woightod	Woightod	Avorago	
Blow	Pooding	Donth	Cono	Cono	וסח		Woightod	Average DBI*	Average DBI*		
BIOW	Reading	Erom Start	Denth	Denth	DET	DIT		Average DF1	Average DF1	DET	Average DF1
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	9.0	0.0	9.0								
	24.0	15.0	24.0	16.5	15.0	225.0					
2	33.0	24.0	33.0	28.5	9.0	81.0		9.0	9.0		
3	40.0	31.0	40.0	36.5	7.0	49.0	11.5	8.0	8.1	8.0	56.0
4	49.0	40.0	49.0	44.5	9.0	81.0	8.4	8.3	8.4	8.0	72.0
5	60.0	51.0	60.0	54.5	11.0	121.0	9.3	9.0	9.2	10.0	110.0
6	69.0	60.0	69.0	64.5	9.0	81.0	9.8	9.0	9.2	10.0	90.0
7	80.0	71.0	80.0	74.5	11.0	121.0	10.4	9.3	9.5	10.0	110.0
8	90.0	81.0	90.0	85.0	10.0	100.0	10.1	9.4	9.6	10.5	105.0
9	100.0	91.0	100.0	95.0	10.0	100.0	10.4	9.5	9.7	10.0	100.0
10	109.0	100.0	109.0	104.5	9.0	81.0	9.7	9.4	9.6	9.5	85.5
11	119.0	110.0	119.0	114.0	10.0	100.0	9.7	9.5	9.6	9.5	95.0
12	128.0	119.0	128.0	123.5	9.0	81.0	9.4	9.5	9.6	9.5	85.5
13	138.0	129.0	138.0	133.0	10.0	100.0	9.7	9.5	9.6		
14	147.0	138.0	147.0	142.5	9.0	81.0	9.4	9.5	9.6		
15	158.0	149.0	158.0	152.5	11.0	121.0	10.1	9.6	9.7		
16	170.0	161.0	170.0	164.0	12.0	144.0	10.8	9.7	9.9		
17	181.0	172.0	181.0	175.5	11.0	121.0	11.4	9.8	10.0		
18	190.0	181.0	190.0	185.5	9.0	81.0	10.8	9.8	9.9		
19	201.0	192.0	201.0	195.5	11.0	121.0	10.4	9.8	10.0		
20	215.0	206.0	215.0	208.0	14.0	196.0	11.7	10.1	10.3		
21	225.0	216.0	225.0	220.0	10.0	100.0	11.9	10.1	10.3		
22	236.0	227.0	236.0	230.5	11.0	121.0	11.9	10.1	10.3		
23	250.0	241.0	250.0	243.0	14.0	196.0	11.9	10.3	10.5		
24	260.0	251.0	260.0	255.0	10.0	100.0	11.9	10.3	10.5		
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	9.32
									E ¹	[MPa]	104.34
									DPI5 ²	[mm/blow]	9.81
									E ²	[MPa]	98.78

Dynamic Cone Penetrometer	Soil	Target	Actual	Actual	Trial
	Origin	Density	Moisture	Desnity	No.
	Duluth	98%	60.9%	97.7%	2

Depth	of cone bel	ow surface at	start [mm]:		10						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	22.0	12.0	22.0	16.0	12.0	144.0					
2	31.0	21.0	31.0	26.5	9.0	81.0		9.0	9.0		
3	41.0	31.0	41.0	36.0	10.0	100.0	10.5	9.5	9.5	9.5	95.0
4	49.0	39.0	49.0	45.0	8.0	64.0	9.1	9.0	9.1	9.0	72.0
5	60.0	50.0	60.0	54.5	11.0	121.0	9.8	9.5	9.6	9.5	104.5
6	68.0	58.0	68.0	64.0	8.0	64.0	9.2	9.2	9.3	9.5	76.0
7	80.0	70.0	80.0	74.0	12.0	144.0	10.6	9.7	9.9	10.0	120.0
8	92.0	82.0	92.0	86.0	12.0	144.0	11.0	10.0	10.3	12.0	144.0
9	103.0	93.0	103.0	97.5	11.0	121.0	11.7	10.1	10.4	11.5	126.5
10	115.0	105.0	115.0	109.0	12.0	144.0	11.7	10.3	10.6	11.5	138.0
11	125.0	115.0	125.0	120.0	10.0	100.0	11.1	10.3	10.5	11.0	110.0
12	136.0	126.0	136.0	130.5	11.0	121.0	11.1	10.4	10.6	10.5	115.5
13	145.0	135.0	145.0	140.5	9.0	81.0	10.1	10.3	10.4		
14	157.0	147.0	157.0	151.0	12.0	144.0	10.8	10.4	10.6		
15	169.0	159.0	169.0	163.0	12.0	144.0	11.2	10.5	10.7		
16	180.0	170.0	180.0	174.5	11.0	121.0	11.7	10.5	10.7		
17	192.0	182.0	192.0	186.0	12.0	144.0	11.7	10.6	10.8		
18	204.0	194.0	204.0	198.0	12.0	144.0	11.7	10.7	10.9		
19	216.0	206.0	216.0	210.0	12.0	144.0	12.0	10.8	11.0		
20	229.0	219.0	229.0	222.5	13.0	169.0	12.4	10.9	11.1		
21	241.0	231.0	241.0	235.0	12.0	144.0	12.4	11.0	11.1		
22	255.0	245.0	255.0	248.0	14.0	196.0	13.1	11.1	11.3		
23	265.0	255.0	265.0	260.0	10.0	100.0	12.2	11.0	11.3		
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	9.54
									<u>-1</u>	IMD-1	404 70

E¹ [MPa] 101.76 DPI5² [mm/blow] 11.32 E² [MPa] 84.86

Dynam	iic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Wing	98%	93.9%	89.9%	1
Depth	of cone bel	low surface at	start [mm]	:	17						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	17.0	0.0	17.0								
1	43.0	26.0	43.0	30.0	26.0	676.0					
2	71.0	54.0	71.0	57.0	28.0	784.0		28.0	28.0		
3	94.0	77.0	94.0	82.5	23.0	529.0	25.8	25.5	25.7	25.5	586.5
4	120.0	103.0	120.0	107.0	26.0	676.0	25.8	25.7	25.8	24.5	637.0
5	144.0	127.0	144.0	132.0	24.0	576.0	24.4	25.3	25.4	25.0	600.0
6	168.0	151.0	168.0	156.0	24.0	576.0	24.7	25.0	25.1	24.0	576.0
7	189.0	172.0	189.0	178.5	21.0	441.0	23.1	24.3	24.5	22.5	472.5
8	210.0	193.0	210.0	199.5	21.0	441.0	22.1	23.9	24.1	21.0	441.0
9	233.0	216.0	233.0	221.5	23.0	529.0	21.7	23.8	24.0	22.0	506.0
10	254.0	237.0	254.0	243.5	21.0	441.0	21.7	23.4	23.7	22.0	462.0
11	274.0	257.0	274.0	264.0	20.0	400.0	21.4	23.1	23.3	20.5	410.0
12	288.0	271.0	288.0	281.0	14.0	196.0	18.9	22.3	22.8	17.0	238.0
*Top la	yer only, fi	rst blow not in	cluded	-	-	-	-	-	DPI5 ¹	[mm/blow]	24.34
									E ¹	[MPa]	37.65
									DPI5 ²	[mm/blow]	20.78
									E ²	[MPa]	44.54

Dynam	ynamic Cone Penetrometer						Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Wing	98%	93.9%	89.9%	2
Depth	of cone bel	ow surface at	start [mm]:		15						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	15.0	0.0	15.0								
1	36.0	21.0	36.0	25.5	21.0	441.0					
2	50.0	35.0	50.0	43.0	14.0	196.0		14.0	14.0		
3	83.0	68.0	83.0	66.5	33.0	1089.0	25.4	23.5	27.3	23.5	775.5
4	107.0	92.0	107.0	95.0	24.0	576.0	26.2	23.7	26.2	28.5	684.0
5	138.0	123.0	138.0	122.5	31.0	961.0	29.8	25.5	27.7	27.5	852.5
6	165.0	150.0	165.0	151.5	27.0	729.0	27.6	25.8	27.5	29.0	783.0
7	191.0	176.0	191.0	178.0	26.0	676.0	28.2	25.8	27.3	26.5	689.0
8	219.0	204.0	219.0	205.0	28.0	784.0	27.0	26.1	27.4		
9	240.0	225.0	240.0	229.5	21.0	441.0	25.3	25.5	26.7		
10	264.0	249.0	264.0	252.0	24.0	576.0	24.7	25.3	26.4		
11	283.0	268.0	283.0	273.5	19.0	361.0	21.5	24.7	25.9		
12											
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	26.84
									E ¹	[MPa]	33.94

DEIJ		20.04	
E ¹	[MPa]	33.94	
DPI5 ²	[mm/blow]	N/A	
E ²	[MPa]	N/A	

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Wing	98%	76.5%	95.9%	1
Depth	of cone bel	ow surface at	start [mm]:		14						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	14.0	0.0	14.0								
1	43.0	29.0	43.0	28.5	29.0	841.0					
2	64.0	50.0	64.0	53.5	21.0	441.0		21.0	21.0		
3	86.0	72.0	86.0	75.0	22.0	484.0	24.5	21.5	21.5	21.5	473.0
4	104.0	90.0	104.0	95.0	18.0	324.0	20.5	20.3	20.5	20.0	360.0
5	120.0	106.0	120.0	112.0	16.0	256.0	19.0	19.3	19.5	17.0	272.0
6	131.0	117.0	131.0	125.5	11.0	121.0	15.6	17.6	18.5	13.5	148.5
7	145.0	131.0	145.0	138.0	14.0	196.0	14.0	17.0	17.9	12.5	175.0
8	161.0	147.0	161.0	153.0	16.0	256.0	14.0	16.9	17.6	15.0	240.0
9	179.0	165.0	179.0	170.0	18.0	324.0	16.2	17.0	17.7	17.0	306.0
10	194.0	180.0	194.0	186.5	15.0	225.0	16.4	16.8	17.4	16.5	247.5
11	210.0	196.0	210.0	202.0	16.0	256.0	16.4	16.7	17.3	15.5	248.0
12	229.0	215.0	229.0	219.5	19.0	361.0	16.8	16.9	17.4	17.5	332.5
13	249.0	235.0	249.0	239.0	20.0	400.0	18.5	17.2	17.7		
14	265.0	251.0	265.0	257.0	16.0	256.0	18.5	17.1	17.6		
15	278.0	264.0	278.0	271.5	13.0	169.0	16.8	16.8	17.3		
*Top la	ayer only, fi	rst blow not in	cluded			DPI5 ¹	[mm/blow]	17.64			
									E ¹	[MPa]	53.01
									DPI5 ²	[mm/blow]	16.36
									F ²	[MDol	57 12

Dynam	iic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Wing	98%	76.5%	95.9%	2
Depth	of cone bel	ow surface at	start [mm]:		13						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	13.0	0.0	13.0								
1	44.0	31.0	44.0	28.5	31.0	961.0					
2	70.0	57.0	70.0	57.0	26.0	676.0		26.0	26.0		
3	92.0	79.0	92.0	81.0	22.0	484.0	26.8	24.0	24.2	24.0	528.0
4	107.0	94.0	107.0	99.5	15.0	225.0	22.0	21.0	22.0	18.5	277.5
5	123.0	110.0	123.0	115.0	16.0	256.0	18.2	19.8	20.8	15.5	248.0
6	140.0	127.0	140.0	131.5	17.0	289.0	16.0	19.2	20.1	16.5	280.5
7	159.0	146.0	159.0	149.5	19.0	361.0	17.4	19.2	19.9	18.0	342.0
8	178.0	165.0	178.0	168.5	19.0	361.0	18.4	19.1	19.8	19.0	361.0
9	195.0	182.0	195.0	186.5	17.0	289.0	18.4	18.9	19.5	18.0	306.0
10	214.0	201.0	214.0	204.5	19.0	361.0	18.4	18.9	19.4	18.0	342.0
11	233.0	220.0	233.0	223.5	19.0	361.0	18.4	18.9	19.4	19.0	361.0
12	251.0	238.0	251.0	242.0	18.0	324.0	18.7	18.8	19.3	18.5	333.0
13	268.0	255.0	268.0	259.5	17.0	289.0	18.0	18.7	19.1		
*Top la	ayer only, fi	rst blow not in	cluded					DPI5 ¹	[mm/blow]	18.83	
									E ¹	[MPa]	49.44
									DPI5 ²	[mm/blow]	18.51
									E ²	[MPa]	50.35

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Wing	98%	63.6%	95.0%	1
Depth	of cone bel	ow surface at	start [mm]:		9						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	9.0	0.0	9.0								
1	35.0	26.0	35.0	22.0	26.0	676.0					
2	55.0	46.0	55.0	45.0	20.0	400.0		20.0	20.0		
3	70.0	61.0	70.0	62.5	15.0	225.0	21.3	17.5	17.9	17.5	262.5
4	85.0	76.0	85.0	77.5	15.0	225.0	17.0	16.7	17.0	15.0	225.0
5	99.0	90.0	99.0	92.0	14.0	196.0	14.7	16.0	16.3	14.5	203.0
6	111.0	102.0	111.0	105.0	12.0	144.0	13.8	15.2	15.7	13.0	156.0
7	125.0	116.0	125.0	118.0	14.0	196.0	13.4	15.0	15.4	13.0	182.0
8	139.0	130.0	139.0	132.0	14.0	196.0	13.4	14.9	15.2	14.0	196.0
9	153.0	144.0	153.0	146.0	14.0	196.0	14.0	14.8	15.1	14.0	196.0
10	164.0	155.0	164.0	158.5	11.0	121.0	13.2	14.3	14.7	12.5	137.5
11	177.0	168.0	177.0	170.5	13.0	169.0	12.8	14.2	14.6	12.0	156.0
12	190.0	181.0	190.0	183.5	13.0	169.0	12.4	14.1	14.4	13.0	169.0
13	204.0	195.0	204.0	197.0	14.0	196.0	13.4	14.1	14.4		
14	221.0	212.0	221.0	212.5	17.0	289.0	14.9	14.3	14.6		
15	233.0	224.0	233.0	227.0	12.0	144.0	14.6	14.1	14.5		
16	244.0	235.0	244.0	238.5	11.0	13.9	13.9	14.3			
*Top la	ayer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	14.69
									E'	[MPa]	64.34
									DPI5 ²	[mm/blow]	13.15
			E ²	[MPa]	72.41						

Soil	Target	Actual	Actual	Trial
Origin	Density	Moisture	Desnity	No.
Red Wina	98%	63.6%	95.0%	2

Depth	of cone bel	ow surface at	start [mm]:		9						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	9.0	0.0	9.0								
1	33.0	24.0	33.0	21.0	24.0	576.0					
2	51.0	42.0	51.0	42.0	18.0	324.0		18.0	18.0		
3	71.0	62.0	71.0	61.0	20.0	400.0	21.0	19.0	19.1	19.0	380.0
4	85.0	76.0	85.0	78.0	14.0	196.0	17.7	17.3	17.7	17.0	238.0
5	100.0	91.0	100.0	92.5	15.0	225.0	16.8	16.8	17.1	14.5	217.5
6	113.0	104.0	113.0	106.5	13.0	169.0	14.0	16.0	16.4	14.0	182.0
7	128.0	119.0	128.0	120.5	15.0	225.0	14.4	15.8	16.2	14.0	210.0
8	140.0	131.0	140.0	134.0	12.0	144.0	13.5	15.3	15.7	13.5	162.0
9	156.0	147.0	156.0	148.0	16.0	256.0	14.5	15.4	15.8	14.0	224.0
10	171.0	162.0	171.0	163.5	15.0	225.0	14.5	15.3	15.7	15.5	232.5
11	182.0	173.0	182.0	176.5	11.0	121.0	14.3	14.9	15.3	13.0	143.0
12	193.0	184.0	193.0	187.5	11.0	121.0	12.6	14.5	15.0	11.0	121.0
13	206.0	197.0	206.0	199.5	13.0	169.0	11.7	14.4	14.9		
14	218.0	209.0	218.0	212.0	12.0	144.0	12.1	14.2	14.7		
15	230.0	221.0	230.0	224.0	12.0	144.0	12.4	14.1	14.5		
16	242.0	233.0	242.0	236.0	12.0	144.0	12.0	13.9	14.4		
*Top la	aver only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	15.94

Dynamic Cone Penetrometer

DPI5	[mmblow]	15.94	
E ¹	[MPa]	59.01	
DPI5 ²	[mm/blow]	13.58	
E ²	[MPa]	69.97	
			_

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Wing	103%	85.6%	94.8%	1
Depth	of cone bel	ow surface at	start [mm]:		9						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	9.0	0.0	9.0								
1	37.0	28.0	37.0	23.0	28.0	784.0					
2	57.0	48.0	57.0	47.0	20.0	400.0		20.0	20.0		
3	72.0	63.0	72.0	64.5	15.0	225.0	22.4	17.5	17.9	17.5	262.5
4	87.0	78.0	87.0	79.5	15.0	225.0	17.0	16.7	17.0	15.0	225.0
5	100.0	91.0	100.0	93.5	13.0	169.0	14.4	15.8	16.2	14.0	182.0
6	112.0	103.0	112.0	106.0	12.0	144.0	13.5	15.0	15.5	12.5	150.0
7	124.0	115.0	124.0	118.0	12.0	144.0	12.4	14.5	15.0	12.0	144.0
8	136.0	127.0	136.0	130.0	12.0	144.0	12.0	14.1	14.7	12.0	144.0
9	149.0	140.0	149.0	142.5	13.0	169.0	12.4	14.0	14.5	12.5	162.5
10	162.0	153.0	162.0	155.5	13.0	169.0	12.7	13.9	14.3	13.0	169.0
11	174.0	165.0	174.0	168.0	12.0	144.0	12.7	13.7	14.1	12.5	150.0
12	184.0	175.0	184.0	179.0	10.0	100.0	11.8	13.4	13.8	11.0	110.0
13	196.0	187.0	196.0	190.0	12.0	144.0	11.4	13.3	13.7		
14	208.0	199.0	208.0	202.0	12.0	144.0	11.4	13.2	13.6		
15	220.0	211.0	220.0	214.0	12.0	144.0	12.0	13.1	13.5		
16	230.0	221.0	230.0	225.0	10.0	11.4	12.9	13.3			
*Top la	ayer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	14.38
									E	[MPa]	65.83
									DPI5 ²	[mm/blow]	12.26
									E ²	[MPa]	77.99

Soil	Target	Actual	Actual	Trial
Origin	Density	Moisture	Desnity	No.
Red Wing	103%	85.6%	94.8%	2

							ricu ming	10070	00.070	04.070	2
Depth	of cone bel	ow surface at	start [mm]:		10						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	35.0	25.0	35.0	22.5	25.0	625.0					
2	53.0	43.0	53.0	44.0	18.0	324.0		18.0	18.0		
3	70.0	60.0	70.0	61.5	17.0	289.0	20.6	17.5	17.5	17.5	297.5
4	83.0	73.0	83.0	76.5	13.0	169.0	16.3	16.0	16.3	15.0	195.0
5	93.0	83.0	93.0	88.0	10.0	100.0	14.0	14.5	15.2	11.5	115.0
6	106.0	96.0	106.0	99.5	13.0	169.0	12.2	14.2	14.8	11.5	149.5
7	120.0	110.0	120.0	113.0	14.0	196.0	12.6	14.2	14.7	13.5	189.0
8	130.0	120.0	130.0	125.0	10.0	100.0	12.6	13.6	14.2	12.0	120.0
9	144.0	134.0	144.0	137.0	14.0	196.0	12.9	13.6	14.2	12.0	168.0
10	157.0	147.0	157.0	150.5	13.0	169.0	12.6	13.6	14.0	13.5	175.5
11	170.0	160.0	170.0	163.5	13.0	169.0	13.4	13.5	13.9	13.0	169.0
12	184.0	174.0	184.0	177.0	14.0	196.0	13.4	13.5	13.9	13.5	189.0
13	197.0	187.0	197.0	190.5	13.0	169.0	13.4	13.5	13.9		
14	211.0	201.0	211.0	204.0	14.0	196.0	13.7	13.5	13.9		
15	226.0	216.0	226.0	218.5	15.0	225.0	14.0	13.6	14.0		
16	235.0	225.0	235.0	230.5	9.0	81.0	13.2	13.3	13.7		
*Top la	ver only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	14.12

Dynamic Cone Penetrometer

DPIS	[mm/biow]	14.1Z
E ¹	[MPa]	67.12
DPI5 ²	[mm/blow]	12.84
E ²	[MPa]	74.27

							1	1			
Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Wing	103%	71.2%	99.1%	1
Depth	of cone bel	ow surface at	start [mm]:		16						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	16.0	0.0	16.0								
1	38.0	22.0	38.0	27.0	22.0	484.0					
2	50.0	34.0	50.0	44.0	12.0	144.0		12.0	12.0		
3	64.0	48.0	64.0	57.0	14.0	196.0	17.2	13.0	13.1	13.0	182.0
4	76.0	60.0	76.0	70.0	12.0	144.0	12.7	12.7	12.7	13.0	156.0
5	90.0	74.0	90.0	83.0	14.0	196.0	13.4	13.0	13.1	13.0	182.0
6	104.0	88.0	104.0	97.0	14.0	196.0	13.4	13.2	13.3	14.0	196.0
7	115.0	99.0	115.0	109.5	11.0	121.0	13.2	12.8	12.9	12.5	137.5
8	125.0	109.0	125.0	120.0	10.0	100.0	11.9	12.4	12.6	10.5	105.0
9	140.0	124.0	140.0	132.5	15.0	225.0	12.4	12.8	13.0	12.5	187.5
10	152.0	136.0	152.0	146.0	12.0	144.0	12.7	12.7	12.9	13.5	162.0
11	165.0	149.0	165.0	158.5	13.0	169.0	13.5	12.7	12.9	12.5	162.5
12	179.0	163.0	179.0	172.0	14.0	196.0	13.1	12.8	13.0	13.5	189.0
13	190.0	174.0	190.0	184.5	11.0	121.0	12.8	12.7	12.8		
14	204.0	188.0	204.0	197.0	14.0	196.0	13.2	12.8	12.9		
15	214.0	198.0	214.0	209.0	10.0	100.0	11.9	12.6	12.8		
16	227.0	211.0	227.0	220.5	13.0	169.0	12.6	12.6	12.8		
17	240.0	224.0	240.0	233.5	13.0	169.0	12.2	12.6	12.8		
18	252.0	236.0	252.0	246.0	12.0	144.0	12.7	12.6	12.8		
19	262.0	246.0	262.0	257.0	10.0	100.0	11.8	12.4	12.6		
*Top layer only, first blow not included										[mm/blow]	13.13
									E ¹	[MPa]	72.50
									DPI5 ²	[mm/blow]	12.59
									F ²	[MPa]	75 79

Dynam	ic Cone Pe	enetrometer				Soil	Target	Actual	Actual	Trial	
							Origin	Density	Moisture	Desnity	No.
							Red Wing	103%	71.2%	99.1%	2
Depth	of cone bel	ow surface at	start [mm]:		10						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	33.0	23.0	33.0	21.5	23.0	529.0					
2	46.0	36.0	46.0	39.5	13.0	169.0		13.0	13.0		
3	60.0	50.0	60.0	53.0	14.0	196.0	17.9	13.5	13.5	13.5	189.0
4	73.0	63.0	73.0	66.5	13.0	169.0	13.4	13.3	13.4	13.5	175.5
5	89.0	79.0	89.0	81.0	16.0	256.0	14.4	14.0	14.1	14.5	232.0
6	102.0	92.0	102.0	95.5	13.0	169.0	14.1	13.8	13.9	14.5	188.5
7	116.0	106.0	116.0	109.0	14.0	196.0	14.4	13.8	13.9	13.5	189.0
8	130.0	120.0	130.0	123.0	14.0	196.0	13.7	13.9	13.9	14.0	196.0
9	142.0	132.0	142.0	136.0	12.0	144.0	13.4	13.6	13.7	13.0	156.0
10	157.0	147.0	157.0	149.5	15.0	225.0	13.8	13.8	13.9	13.5	202.5
11	170.0	160.0	170.0	163.5	13.0	169.0	13.5	13.7	13.8	14.0	182.0
12	183.0	173.0	183.0	176.5	13.0	169.0	13.7	13.6	13.7	13.0	169.0
13	195.0	185.0	195.0	189.0	12.0	144.0	12.7	13.5	13.6		
14	210.0	200.0	210.0	202.5	15.0	225.0	13.5	13.6	13.7		
15	223.0	213.0	223.0	216.5	13.0	169.0	13.5	13.6	13.7		
16	237.0	227.0	237.0	230.0	14.0	196.0	14.0	13.6	13.7		
17	249.0	239.0	249.0	243.0	12.0	144.0	13.1	13.5	13.6		
18	260.0	250.0	260.0	254.5	11.0	121.0	12.5	13.4	13.5		
*Top layer only, first blow not included									DPI5 ¹	[mm/blow]	13.91

DPI5 ¹	[mm/blow]	13.91
E ¹	[MPa]	68.17
DPI5 ²	[mm/blow]	13.51
F ²	[MPa]	70.31

Dynamic Cone Penetrometer							Soil	Target	Actual	Actual	Trial
							Dingin Red Wing	1029/	62.6%	Desility	1
Depth	of cone bel	ow surface at	etart [mm]		8		Red Willy	103%	03.0%	90.2%	I
Deptity		Cone	Total	Average	0		Three Blow	Non-Weighted	Weighted	Average	
Blow	Pooding	Donth	Cono	Cono	וסח		Weighted	Average DBI*	Avorago DBI*	DPI	
BIOW	Reading	Erom Stort	Donth	Donth	DET	DIT		Average DF1	Average DF1	DET	Average DF1
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	Imm/blowl	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
	[1111] 8.0	0.0	[1111] 8.0	frind	[IIIII/DIOW]	[mm/biow]	[IIIII/DIOW]	[IIIII/DIOW]	[IIIII/DIOW]	[IIIII/DIOW]	
	28.0	20.0	28.0	18.0	20.0	400.0					
	20.0	20.0	20.0	22.0	20.0	400.0		10.0	10.0		
	50.0	30.0	50.0	33.0	10.0	100.0		10.0	10.0		122.0
	50.0	42.0	50.0	44.0 57.5	12.0	144.0	10.5	12.2	10.7	12.5	132.0
4	75.0	57.0	75.0	37.5	10.0	223.0	12.7	12.3	12.7	13.5	202.3
5	75.0	67.0	75.0	70.0	10.0	100.0	12.7	11.0	12.1	12.5	125.0
6	86.0	78.0	86.0	80.5	11.0	121.0	12.4	11.6	11.9	10.5	115.5
	97.0	89.0	97.0	91.5	11.0	121.0	10.7	11.5	11.8	11.0	121.0
8	106.0	98.0	106.0	101.5	9.0	81.0	10.4	11.1	11.4	10.0	90.0
9	110.0	102.0	110.0	108.0	4.0	16.0	9.1	10.3	11.1	6.5	26.0
10	120.0	112.0	120.0	115.0	10.0	100.0	8.6	10.2	11.0	7.0	70.0
11	130.0	122.0	130.0	125.0	10.0	100.0	9.0	10.2	10.9	10.0	100.0
12	140.0	132.0	140.0	135.0	10.0	100.0	10.0	10.2	10.8	10.0	100.0
13	150.0	142.0	150.0	145.0	10.0	100.0	10.0	10.2	10.7		
14	160.0	152.0	160.0	155.0	10.0	100.0	10.0	10.2	10.7		
15	169.0	161.0	169.0	164.5	9.0	81.0	9.7	10.1	10.6		
16	179.0	171.0	179.0	174.0	10.0	100.0	9.7	10.1	10.5		
17	189.0	181.0	189.0	184.0	10.0	100.0	9.7	10.1	10.5		
18	199.0	191.0	199.0	194.0	10.0	100.0	10.0	10.1	10.5		
19	209.0	201.0	209.0	204.0	10.0	100.0	10.0	10.1	10.4		
20	220.0	212.0	220.0	214.5	11.0	121.0	10.4	10.1	10.5		
21	229.0	221.0	229.0	224.5	9.0	81.0	10.1	10.1	10.4		
22	237.0	229.0	237.0	233.0	8.0	64.0	9.5	10.0	10.3		
23	245.0	237.0	245.0	241.0	8.0	64.0	8.4	9.9	10.2		
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	11.80
									E1	[MPa]	81.23
									DPI5 ²	[mm/blow]	8.98
									F ²	[MPa]	108 57

Dynamic Cone Penetrometer	Soil	Target	Actual	Actual	Trial
	Origin	Density	Moisture	Desnity	No.
	Red Wing	103%	63.6%	96.2%	2
Depth of each below surface at start [mm]; 14					

Depth	of cone bel	ow surface at	start [mm]:		14						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	14.0	0.0	14.0								
1	29.0	15.0	29.0	21.5	15.0	225.0					
2	44.0	30.0	44.0	36.5	15.0	225.0		15.0	15.0		
3	54.0	40.0	54.0	49.0	10.0	100.0	13.8	12.5	13.0	12.5	125.0
4	65.0	51.0	65.0	59.5	11.0	121.0	12.4	12.0	12.4	10.5	115.5
5	81.0	67.0	81.0	73.0	16.0	256.0	12.9	13.0	13.5	13.5	216.0
6	88.0	74.0	88.0	84.5	7.0	49.0	12.5	11.8	12.7	11.5	80.5
7	96.0	82.0	96.0	92.0	8.0	64.0	11.9	11.2	12.2	7.5	60.0
8	105.0	91.0	105.0	100.5	9.0	81.0	8.1	10.9	11.8	8.5	76.5
9	115.0	101.0	115.0	110.0	10.0	100.0	9.1	10.8	11.6	9.5	95.0
10	125.0	111.0	125.0	120.0	10.0	100.0	9.7	10.7	11.4	10.0	100.0
11	135.0	121.0	135.0	130.0	10.0	100.0	10.0	10.6	11.3	10.0	100.0
12	145.0	131.0	145.0	140.0	10.0	100.0	10.0	10.5	11.2	10.0	100.0
13	155.0	141.0	155.0	150.0	10.0	100.0	10.0	10.5	11.1		
14	165.0	151.0	165.0	160.0	10.0	100.0	10.0	10.5	11.0		
15	175.0	161.0	175.0	170.0	10.0	100.0	10.0	10.4	10.9		
16	185.0	171.0	185.0	180.0	10.0	100.0	10.0	10.4	10.9		
17	195.0	181.0	195.0	190.0	10.0	100.0	10.0	10.4	10.8		
18	207.0	193.0	207.0	201.0	12.0	144.0	10.8	10.5	10.9		
19	217.0	203.0	217.0	212.0	10.0	100.0	10.8	10.4	10.9		
20	227.0	213.0	227.0	222.0	10.0	100.0	10.8	10.4	10.8		
21	236.0	222.0	236.0	231.5	9.0	81.0	9.7	10.4	10.7		
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	11.48
									E'	[MPa]	83.61
									DPI5 ²	[mm/blow]	9.62
									E ²	[MPa]	100.85

Dvnam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
_ ,							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	98%	85.2%	97.5%	1
Depth	of cone bel	ow surface at	start [mm]:		10						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	45.0	35.0	45.0	27.5	35.0	1225.0					
2	81.0	71.0	81.0	63.0	36.0	1296.0		36.0	36.0		
3	111.0	101.0	111.0	96.0	30.0	900.0	33.9	33.0	33.3	33.0	990.0
4	145.0	135.0	145.0	128.0	34.0	1156.0	33.5	33.3	33.5	32.0	1088.0
5	177.0	167.0	177.0	161.0	32.0	1024.0	32.1	33.0	33.2	33.0	1056.0
6	205.0	195.0	205.0	191.0	28.0	784.0	31.5	32.0	32.3	30.0	840.0
7	237.0	227.0	237.0	221.0	32.0	1024.0	30.8	32.0	32.2	30.0	960.0
8											
9											
10											
11											
12											
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	31.63
									E ¹	[MPa]	28.51
									DPI5 ²	[mm/blow]	N/A
									E ²	[MPa]	N/A

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	98%	85.2%	97.5%	2
Depth	of cone bel	ow surface at	start [mm]:		8						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	8.0	0.0	8.0								
1	41.0	33.0	41.0	24.5	33.0	1089.0					
2	78.0	70.0	78.0	59.5	37.0	1369.0		37.0	37.0		
3	107.0	99.0	107.0	92.5	29.0	841.0	33.3	33.0	33.5	33.0	957.0
4	144.0	136.0	144.0	125.5	37.0	1369.0	34.7	34.3	34.7	33.0	1221.0
5	174.0	166.0	174.0	159.0	30.0	900.0	32.4	33.3	33.7	33.5	1005.0
6	200.0	192.0	200.0	187.0	26.0	676.0	31.7	31.8	32.4	28.0	728.0
7	231.0	223.0	231.0	215.5	31.0	961.0	29.2	31.7	32.2	28.5	883.5
8											
9											
10											
11											
12											
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	31.34
									E ¹	[MPa]	28.79
									DPI5 ²	[mm/blow]	N/A

N/A

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	98%	65.0%	97.8%	1
Depth	of cone bel	ow surface at	start [mm]:		10						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	30.0	20.0	30.0	20.0	20.0	400.0					
2	50.0	40.0	50.0	40.0	20.0	400.0		20.0	20.0		
3	69.0	59.0	69.0	59.5	19.0	361.0	19.7	19.5	19.5	19.5	370.5
4	87.0	77.0	87.0	78.0	18.0	324.0	19.0	19.0	19.0	18.5	333.0
5	105.0	95.0	105.0	96.0	18.0	324.0	18.3	18.8	18.8	18.0	324.0
6	121.0	111.0	121.0	113.0	16.0	256.0	17.4	18.2	18.3	17.0	272.0
7	141.0	131.0	141.0	131.0	20.0	400.0	18.1	18.5	18.6	18.0	360.0
8	161.0	151.0	161.0	151.0	20.0	400.0	18.9	18.7	18.8	20.0	400.0
9	182.0	172.0	182.0	171.5	21.0	441.0	20.3	19.0	19.1	20.5	430.5
10	208.0	198.0	208.0	195.0	26.0	676.0	22.6	19.8	20.1	23.5	611.0
11	229.0	219.0	229.0	218.5	21.0	441.0	22.9	19.9	20.2	23.5	493.5
12	255.0	245.0	255.0	242.0	26.0	676.0	24.6	20.5	20.9	23.5	611.0
*Top la	ayer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	18.24
									E ¹	[MPa]	51.16
									DPI5 ²	[mm/blow]	22.33
									E ²	[MPa]	41.25

Dynam	ic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	98%	65.0%	97.8%	2
Depth	of cone bel	ow surface at	start [mm]:		10						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	30.0	20.0	30.0	20.0	20.0	400.0					
2	47.0	37.0	47.0	38.5	17.0	289.0		17.0	17.0		
3	66.0	56.0	66.0	56.5	19.0	361.0	18.8	18.0	18.1	18.0	342.0
4	85.0	75.0	85.0	75.5	19.0	361.0	18.4	18.3	18.4	19.0	361.0
5	102.0	92.0	102.0	93.5	17.0	289.0	18.4	18.0	18.1	18.0	306.0
6	118.0	108.0	118.0	110.0	16.0	256.0	17.4	17.6	17.7	16.5	264.0
7	136.0	126.0	136.0	127.0	18.0	324.0	17.0	17.7	17.7	17.0	306.0
8	155.0	145.0	155.0	145.5	19.0	361.0	17.8	17.9	17.9	18.5	351.5
9	175.0	165.0	175.0	165.0	20.0	400.0	19.0	18.1	18.2	19.5	390.0
10	195.0	185.0	195.0	185.0	20.0	400.0	19.7	18.3	18.4	20.0	400.0
11	214.0	204.0	214.0	204.5	19.0	361.0	19.7	18.4	18.5	19.5	370.5
12	235.0	225.0	235.0	224.5	21.0	441.0	20.0	18.6	18.7	20.0	420.0
13	256.0	246.0	256.0	245.5	21.0	441.0	20.4	18.8	19.0		
*Top la	iyer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	17.74
									E ¹	[MPa]	52.67
									DPI5 ²	[mm/blow]	19.52
									E ²	[MPa]	47.60

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
					_		Red Lake Falls	98%	49.0%	90.5%	1
Depth	of cone bel	ow surface at	start [mm]:	A	5		These Discus	New Maintena		A	DDL
Blow	Pooding	Cone	Total	Average	וסס		Inree Blow	Non-weighted	weighted	Average	
BIOW	Reading	Erom Start	Donth	Dopth	DFI	DFI	Avorago DPI	Average DFI	Average DFI	DFI	Average DFI
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	5.0	0.0	5.0		[IIII1/DIOW]	[mm/biow]			[/////////////////////////////////////		[iiiii /biow]
Ĭ	18.0	13.0	18.0	11.5	13.0	169.0					
2	26.0	21.0	26.0	22.0	8.0	64.0		8.0	8.0		
3	31.0	26.0	31.0	28.5	5.0	25.0	9.9	6.5	6.8	6.5	32.5
4	40.0	35.0	40.0	35.5	9.0	81.0	7.7	7.3	7.7	7.0	63.0
5	43.0	38.0	43.0	41.5	3.0	9.0	6.8	6.3	7.2	6.0	18.0
6	50.0	45.0	50.0	46.5	7.0	49.0	7.3	6.4	7.1	5.0	35.0
7	56.0	51.0	56.0	53.0	6.0	36.0	5.9	6.3	6.9	6.5	39.0
8	63.0	58.0	63.0	59.5	7.0	49.0	6.7	6.4	7.0	6.5	45.5
9	67.0	62.0	67.0	65.0	4.0	16.0	5.9	6.1	6.7	5.5	22.0
10	74.0	69.0	74.0	70.5	7.0	49.0	6.3	6.2	6.8	5.5	38.5
11	80.0	75.0	80.0	77.0	6.0	36.0	5.9	6.2	6.7	6.5	39.0
12	87.0	82.0	87.0	83.5	7.0	49.0	6.7	6.3	6.7	6.5	45.5
13	91.0	86.0	91.0	89.0	4.0	16.0	5.9	6.1	6.6		
14	94.0	89.0	94.0	92.5	3.0	9.0	5.3	5.8	6.4		
15	99.0	94.0	99.0	96.5	5.0	25.0	4.2	5.8	6.3		
16	103.0	98.0	103.0	101.0	4.0	16.0	4.2	5.7	6.2		
17	108.0	103.0	108.0	105.5	5.0	25.0	4.7	5.6	6.2		
18	112.0	107.0	112.0	110.0	4.0	16.0	4.4	5.5	6.1		
19	120.0	115.0	120.0	116.0	8.0	64.0	6.2	5.7	6.2		
20	126.0	121.0	126.0	123.0	6.0	36.0	6.4	5.7	6.2		
21	132.0	127.0	132.0	129.0	6.0	36.0	6.8	5.7	6.2		
22	137.0	132.0	137.0	134.5	5.0	25.0	5.7	5.7	6.1		
23	143.0	138.0	143.0	140.0	6.0	36.0	5.7	5.7	6.1		
24	149.0	144.0	149.0	146.0	6.0	36.0	5.7	5.7	6.1		
25	157.0	152.0	157.0	153.0	8.0	64.0 16.0	6.8	5.8	6.2		
20	161.0	150.0	160.0	159.0	4.0	16.0	0.4	5.7	6.2		
21	175.0	104.0	175.0	172.0	6.0	36.0	6.4	5.8	6.3		
20	180.0	175.0	180.0	177.5	5.0	25.0	6.6	5.8	6.2		
30	187.0	182.0	187.0	183.5	7.0	49.0	6.1	5.8	6.3		
31	193.0	188.0	193.0	190.0	6.0	36.0	6.1	5.8	6.2		
32	200.0	195.0	200.0	196.5	7.0	49.0	6.7	5.9	6.3		
33	208.0	203.0	208.0	204.0	8.0	64.0	7.1	5.9	6.3		
34	215.0	210.0	215.0	211.5	7.0	49.0	7.4	6.0	6.4		
35	221.0	216.0	221.0	218.0	6.0	36.0	7.1	6.0	6.4		
36	229.0	224.0	229.0	225.0	8.0	64.0	7.1	6.0	6.4		
37	235.0	230.0	235.0	232.0	6.0	36.0	6.8	6.0	6.4		
*Top la	iyer only, fi	st blow not in	cluded						DPI5 ¹	[mm/blow]	6.25
									E ¹	[MPa]	159.45
									DPI5 ²	[mm/blow]	6.15
									E ²	[MPa]	162.34

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	98%	49.0%	90.5%	2
Depth	of cone bel	ow surface at	start [mm]:		5						
		Cone	Total	Average		DD12	Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPF	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
	[mm]	From Start	Depth	Depth	Farmer (helessed)	[mage2/h au 2]	Average DPI	Faran (h. 1 a	farme (helessed)	farmer de Laure A	[mm ² /h] au 21
	[mm]	[mm]	[mm]	[mm]	[mm/biow]	[mm/blow]	[mm/biow]	[mm/biow]	[mm/biow]	[mm/biou]	[wold\ mm]
	16.0	0.0	16.0	10.5	11.0	121.0					
	22.0	17.0	22.0	10.5	6.0	121.0					
2	22.0	24.0	22.0	25.5	7.0	30.0 49.0	8.6	6.0	6.5	65	45.5
4	20.0	24.0	34.0	20.0	5.0	45.0 25.0	6.1	6.0	6.1	6.0	40.0 30.0
5	39.0	23.0	39.0	36.5	5.0	25.0	5.8	5.8	5.9	5.0	25.0
6	45.0	40.0	45.0	42.0	6.0	36.0	5.0	5.8	5.9	5.5	33.0
7	50.0	45.0	50.0	47.5	5.0	25.0	5.4	5.7	5.8	5.5	27.5
8	56.0	51.0	56.0	53.0	6.0	36.0	5.7	5.7	5.8	5.5	33.0
9	63.0	58.0	63.0	59.5	7.0	49.0	6.1	5.9	6.0	6.5	45.5
10	69.0	64.0	69.0	66.0	6.0	36.0	6.4	5.9	6.0	6.5	39.0
11	76.0	71.0	76.0	72.5	7.0	49.0	6.7	6.0	6.1	6.5	45.5
12	83.0	78.0	83.0	79.5	7.0	49.0	6.7	6.1	6.2	7.0	49.0
13	87.0	82.0	87.0	85.0	4.0	16.0	6.3	5.9	6.1		
14	91.0	86.0	91.0	89.0	4.0	16.0	5.4	5.8	6.0		
15	99.0	94.0	99.0	95.0	8.0	64.0	6.0	5.9	6.2		
16	103.0	98.0	103.0	101.0	4.0	16.0	6.0	5.8	6.1		
17	111.0	106.0	111.0	107.0	8.0	64.0	7.2	5.9	6.2		
18	117.0	112.0	117.0	114.0	6.0	36.0	6.4	5.9	6.2		
19	121.0	116.0	121.0	119.0	4.0	16.0	6.4	5.8	6.1		
20	129.0	124.0	129.0	125.0	8.0	64.0	6.4	5.9	6.3		
21	133.0	128.0	133.0	131.0	4.0	16.0	6.0	5.9	6.2		
22	140.0	135.0	140.0	136.5	7.0	49.0	6.8	5.9	6.2		
23	149.0	144.0	149.0	144.5	9.0	81.0	7.3	6.0	6.4		
24	158.0	153.0	158.0	153.5	9.0	81.0	8.4	6.2	6.6		
25	164.0	159.0	164.0	161.0	6.0	36.0	8.3	6.2	6.6		
26	168.0	163.0	168.0	166.0	4.0	16.0	7.0	6.1	6.5		
27	175.0	170.0	175.0	171.5	7.0	49.0	5.9	6.1	6.5		
28	183.0	178.0	183.0	179.0	8.0	64.0	6.8	6.2	6.6		
29	190.0	185.0	190.0	186.5	7.0	49.0	7.4	6.2	6.6		
30	199.0	194.0	199.0	194.5	9.0	81.0	8.1	6.3	6.7		
31	204.0	199.0	204.0	201.5	5.0	25.0	7.4	6.3	6.7		
32	210.0	205.0	210.0	207.0	6.0	36.0	7.1	6.3	6.6		
33	220.0	215.0	220.0	215.0	10.0	100.0	7.7	6.4	6.8		
34	227.0	222.0	227.0	223.5	7.0	49.0	8.0	6.4	6.8		
35	233.0	228.0	233.0	230.0	6.0	36.0	8.0	6.4	6.8		
36 *Top /c	239.0	234.0	239.0	236.0	6.0	36.0	6.4	6.4	6.8		
i ob la	iyer only, fil	SUDIOW NOT IN	ciudea								0.70 174 21
											6.42
									E ²	[MPa]	154.96
									1	livicaj	134.00

Dynam	iic Cone Pe	enetrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	103%	74.7%	99.4%	1
Depth	of cone bel	ow surface at	start [mm]:		7						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	7.0	0.0	7.0								
1	24.0	17.0	24.0	15.5	17.0	289.0					
2	37.0	30.0	37.0	30.5	13.0	169.0		13.0	13.0		
3	51.0	44.0	51.0	44.0	14.0	196.0	14.9	13.5	13.5	13.5	189.0
4	68.0	61.0	68.0	59.5	17.0	289.0	14.9	14.7	14.9	15.5	263.5
5	83.0	76.0	83.0	75.5	15.0	225.0	15.4	14.8	14.9	16.0	240.0
6	98.0	91.0	98.0	90.5	15.0	225.0	15.7	14.8	14.9	15.0	225.0
7	110.0	103.0	110.0	104.0	12.0	144.0	14.1	14.3	14.5	13.5	162.0
8	124.0	117.0	124.0	117.0	14.0	196.0	13.8	14.3	14.4	13.0	182.0
9	136.0	129.0	136.0	130.0	12.0	144.0	12.7	14.0	14.2	13.0	156.0
10	150.0	143.0	150.0	143.0	14.0	196.0	13.4	14.0	14.2	13.0	182.0
11	165.0	158.0	165.0	157.5	15.0	225.0	13.8	14.1	14.2	14.5	217.5
12	178.0	171.0	178.0	171.5	13.0	169.0	14.0	14.0	14.1	14.0	182.0
13	191.0	184.0	191.0	184.5	13.0	169.0	13.7	13.9	14.1		
14	204.0	197.0	204.0	197.5	13.0	169.0	13.0	13.8	14.0		
15	220.0	213.0	220.0	212.0	16.0	256.0	14.1	14.0	14.1		
16	234.0	227.0	234.0	227.0	14.0	196.0	14.4	14.0	14.1		
17	250.0	243.0	250.0	242.0	16.0	256.0	15.4	14.1	14.3		
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	14.79
									E ¹	[MPa]	63.91
									DPI5 ²	[mm/blow]	13.52

Dynamic Cone Penetrometer	

Soil	Target	Actual	Actual	Trial
Origin	Density	Moisture	Desnity	No.
Red Lake Falls	103%	74.7%	99.4%	2

F

[MPa]

[MPa] [mm/blow] [MPa]

72.59

70.27

Depth	of cone bel	ow surface at	start [mm]:		7						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	7.0	0.0	7.0								
1	23.0	16.0	23.0	15.0	16.0	256.0					
2	38.0	31.0	38.0	30.5	15.0	225.0		15.0	15.0		
3	51.0	44.0	51.0	44.5	13.0	169.0	14.8	14.0	14.1	14.0	182.0
4	66.0	59.0	66.0	58.5	15.0	225.0	14.4	14.3	14.4	14.0	210.0
5	80.0	73.0	80.0	73.0	14.0	196.0	14.0	14.3	14.3	14.5	203.0
6	95.0	88.0	95.0	87.5	15.0	225.0	14.7	14.4	14.4	14.5	217.5
7	110.0	103.0	110.0	102.5	15.0	225.0	14.7	14.5	14.5	15.0	225.0
8	122.0	115.0	122.0	116.0	12.0	144.0	14.1	14.1	14.2	13.5	162.0
9	135.0	128.0	135.0	128.5	13.0	169.0	13.5	14.0	14.1	12.5	162.5
10	147.0	140.0	147.0	141.0	12.0	144.0	12.4	13.8	13.9	12.5	150.0
11	161.0	154.0	161.0	154.0	14.0	196.0	13.1	13.8	13.9	13.0	182.0
12	175.0	168.0	175.0	168.0	14.0	196.0	13.4	13.8	13.9	14.0	196.0
13	189.0	182.0	189.0	182.0	14.0	196.0	14.0	13.8	13.9		
14	201.0	194.0	201.0	195.0	12.0	144.0	13.4	13.7	13.8		
15	216.0	209.0	216.0	208.5	15.0	225.0	13.8	13.8	13.9		
16	232.0	225.0	232.0	224.0	16.0	256.0	14.5	13.9	14.0		
17	245.0	238.0	245.0	238.5	13.0	169.0	14.8	13.9	14.0		
*Top la	ayer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	14.41
									E ¹	[MPa]	65.69
									DPI5 ²	[mm/blow]	13.12

									-		
Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	103%	60.9%	102.9%	1
Depth	of cone bel	ow surface at	start [mm]:		7						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	7.0	0.0	7.0								
1	19.0	12.0	19.0	13.0	12.0	144.0					
2	27.0	20.0	27.0	23.0	8.0	64.0		8.0	8.0		
3	35.0	28.0	35.0	31.0	8.0	64.0	9.7	8.0	8.0	8.0	64.0
4	42.0	35.0	42.0	38.5	7.0	49.0	7.7	7.7	7.7	7.5	52.5
5	50.0	43.0	50.0	46.0	8.0	64.0	7.7	7.8	7.8	7.5	60.0
6	56.0	49.0	56.0	53.0	6.0	36.0	7.1	7.4	7.5	7.0	42.0
7	64.0	57.0	64.0	60.0	8.0	64.0	7.5	7.5	7.6	7.0	56.0
8	72.0	65.0	72.0	68.0	8.0	64.0	7.5	7.6	7.6	8.0	64.0
9	81.0	74.0	81.0	76.5	9.0	81.0	8.4	7.8	7.8	8.5	76.5
10	89.0	82.0	89.0	85.0	8.0	64.0	8.4	7.8	7.9	8.5	68.0
11	95.0	88.0	95.0	92.0	6.0	36.0	7.9	7.6	7.7	7.0	42.0
12	100.0	93.0	100.0	97.5	5.0	25.0	6.6	7.4	7.5	5.5	27.5
13	109.0	102.0	109.0	104.5	9.0	81.0	7.1	7.5	7.7		
14	118.0	111.0	118.0	113.5	9.0	81.0	8.1	7.6	7.8		
15	126.0	119.0	126.0	122.0	8.0	64.0	8.7	7.6	7.8		
16	132.0	125.0	132.0	129.0	6.0	36.0	7.9	7.5	7.7		
17	141.0	134.0	141.0	136.5	9.0	81.0	7.9	7.6	7.8		
18	149.0	142.0	149.0	145.0	8.0	64.0	7.9	7.6	7.8		
19	156.0	149.0	156.0	152.5	7.0	49.0	8.1	7.6	7.8		
20	165.0	158.0	165.0	160.5	9.0	81.0	8.1	7.7	7.9		
21	174.0	167.0	174.0	169.5	9.0	81.0	8.4	7.8	7.9		
22	183.0	176.0	183.0	178.5	9.0	81.0	9.0	7.8	8.0		
23	190.0	183.0	190.0	186.5	7.0	49.0	8.4	7.8	7.9		
24	199.0	192.0	199.0	194.5	9.0	81.0	8.4	7.8	8.0		
25	207.0	200.0	207.0	203.0	8.0	64.0	8.1	7.8	8.0		
26	215.0	208.0	215.0	211.0	8.0	64.0	8.4	7.8	8.0		
27	224.0	217.0	224.0	219.5	9.0	81.0	8.4	7.9	8.0		
28	235.0	228.0	235.0	229.5	11.0	121.0	9.5	8.0	8.2		
*Top la	iyer only, fii	rst blow not in	cluded	-	-	-	-	-	DPI5 ¹	[mm/blow]	7.42
									E ¹	[MPa]	132.92
									DPI5 ²	[mm/blow]	7.72
									F ²	[MPa]	127.38

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	103%	60.9%	102.9%	2
Depth	of cone bel	ow surface at	start [mm]:		5						
		Cone	Total	Average			Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth			Average DPI				
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	5.0	0.0	5.0								
1	20.0	15.0	20.0	12.5	15.0	225.0					
2	27.0	22.0	27.0	23.5	7.0	49.0		7.0	7.0		
3	35.0	30.0	35.0	31.0	8.0	64.0	11.3	7.5	7.5	7.5	60.0
4	44.0	39.0	44.0	39.5	9.0	81.0	8.1	8.0	8.1	8.5	76.5
5	55.0	50.0	55.0	49.5	11.0	121.0	9.5	8.8	9.0	10.0	110.0
6	64.0	59.0	64.0	59.5	9.0	81.0	9.8	8.8	9.0	10.0	90.0
7	72.0	67.0	72.0	68.0	8.0	64.0	9.5	8.7	8.8	8.5	68.0
8	80.0	75.0	80.0	76.0	8.0	64.0	8.4	8.6	8.7	8.0	64.0
9	88.0	83.0	88.0	84.0	8.0	64.0	8.0	8.5	8.6	8.0	64.0
10	97.0	92.0	97.0	92.5	9.0	81.0	8.4	8.6	8.7	8.5	76.5
11	103.0	98.0	103.0	100.0	6.0	36.0	7.9	8.3	8.5	7.5	45.0
12	110.0	105.0	110.0	106.5	7.0	49.0	7.5	8.2	8.4	6.5	45.5
13	120.0	115.0	120.0	115.0	10.0	100.0	8.0	8.3	8.5		
14	127.0	122.0	127.0	123.5	7.0	49.0	8.3	8.2	8.4		
15	135.0	130.0	135.0	131.0	8.0	64.0	8.5	8.2	8.4		
16	145.0	140.0	145.0	140.0	10.0	100.0	8.5	8.3	8.5		
17	153.0	148.0	153.0	149.0	8.0	64.0	8.8	8.3	8.5		
18	160.0	155.0	160.0	156.5	7.0	49.0	8.5	8.2	8.4		
19	170.0	165.0	170.0	165.0	10.0	100.0	8.5	8.3	8.5		
20	179.0	174.0	179.0	174.5	9.0	81.0	8.8	8.4	8.6		
21	188.0	183.0	188.0	183.5	9.0	81.0	9.4	8.4	8.6		
22	195.0	190.0	195.0	191.5	7.0	49.0	8.4	8.3	8.5		
23	203.0	198.0	203.0	199.0	8.0	64.0	8.1	8.3	8.5		
24	213.0	208.0	213.0	208.0	10.0	100.0	8.5	8.4	8.6		
25	223.0	218.0	223.0	218.0	10.0	100.0	9.4	8.5	8.6		
26	234.0	229.0	234.0	228.5	11.0	121.0	10.4	8.6	8.8		
27	243.0	238.0	243.0	238.5	9.0	81.0	10.1	8.6	8.8		
*Top la	yer only, fi	rst blow not in	cluded						DPI5 ¹	[mm/blow]	8.99
									E ¹	[MPa]	108.41
									DPI5 ²	[mm/blow]	7 76

DPI5² [mm/blow] 7.76 E² [MPa] 126.67

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	103%	48.6%	100.9%	1
Depth	of cone bel	ow surface at	start [mm]:		10		1		1		
		Cone	Total	Average		2	Three Blow	Non-Weighted	Weighted	Average	DPI x
Blow	Reading	Depth	Cone	Cone	DPI	DPI ²	Weighted	Average DPI*	Average DPI*	DPI	Average DPI
		From Start	Depth	Depth		- 2	Average DPI				- 2 - 2
	[mm]	[mm]	[mm]	[mm]	[mm/blow]	[mm ² /blow ²]	[mm/blow]	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blow ²]
0	10.0	0.0	10.0								
1	20.0	10.0	20.0	15.0	10.0	100.0					
2	25.0	15.0	25.0	22.5	5.0	25.0		5.0	5.0		
3	30.0	20.0	30.0	27.5	5.0	25.0	7.5	5.0	5.0	5.0	25.0
4	35.0	25.0	35.0	32.5	5.0	25.0	5.0	5.0	5.0	5.0	25.0
5	38.0	28.0	38.0	36.5	3.0	9.0	4.5	4.5	4.7	4.0	12.0
6	42.0	32.0	42.0	40.0	4.0	16.0	4.2	4.4	4.5	3.5	14.0
7	46.0	36.0	46.0	44.0	4.0	16.0	3.7	4.3	4.5	4.0	16.0
8	50.0	40.0	50.0	48.0	4.0	16.0	4.0	4.3	4.4	4.0	16.0
9	53.0	43.0	53.0	51.5	3.0	9.0	3.7	4.1	4.3	3.5	10.5
10	60.0	50.0	60.0	56.5	7.0	49.0	5.3	4.4	4.8	5.0	35.0
11	65.0	55.0	65.0	62.5	5.0	25.0	5.5	4.5	4.8	6.0	30.0
12	69.0	59.0	69.0	67.0	4.0	16.0	5.6	4.5	4.7	4.5	18.0
13	75.0	65.0	75.0	72.0	6.0	36.0	5.1	4.6	4.9		
14	80.0	70.0	80.0	77.5	5.0	25.0	5.1	4.6	4.9		
15	85.0	75.0	85.0	82.5	5.0	25.0	5.4	4.6	4.9		
16	88.0	78.0	88.0	86.5	3.0	9.0	4.5	4.5	4.8		
17	90.0	80.0	90.0	89.0	2.0	4.0	3.8	4.4	4.7		
18	94.0	84.0	94.0	92.0	4.0	16.0	3.2	4.4	4.7		
19	100.0	90.0	100.0	97.0	6.0	36.0	4.7	4.4	4.8		
20	103.0	93.0	103.0	101.5	3.0	9.0	4.7	4.4	4.7		
21	108.0	98.0	108.0	105.5	5.0	25.0	5.0	4.4	4.7		
22	114.0	104.0	114.0	111.0	6.0	36.0	5.0	4.5	4.8		
23	118.0	108.0	118.0	116.0	4.0	16.0	5.1	4.5	4.8		
24	122.0	112.0	122.0	120.0	4.0	16.0	4.9	4.4	4.7		
25	128.0	118.0	128.0	125.0	6.0	36.0	4.9	4.5	4.8		
26	132.0	122.0	132.0	130.0	4.0	16.0	4.9	4.5	4.8		
27	135.0	125.0	135.0	133.5	3.0	9.0	4.7	4.4	4.7		
28	139.0	129.0	139.0	137.0	4.0	16.0	3.7	4.4	4.7		
29	144.0	134.0	144.0	141.5	5.0	25.0	4.2	4.4	4.7		
30	148.0	138.0	148.0	146.0	4.0	16.0	4.4	4.4	4.7		
31	153.0	143.0	153.0	150.5	5.0	25.0	4.7	4.4	4.7		
32	158.0	148.0	158.0	155.5	5.0	25.0	4.7	4.5	4.7		
33	164.0	154.0	164.0	161.0	6.0	36.0	5.4	4.5	4.8		
34	169.0	159.0	169.0	166.5	5.0	25.0	5.4	4.5	4.8		
35	174.0	164.0	174.0	171.5	5.0	25.0	5.4	4.5	4.8		
36	179.0	169.0	179.0	176.5	5.0	25.0	5.0	4.5	4.8		
37	182.0	172.0	182.0	180.5	3.0	9.0	4.5	4.5	4.8		
38	188.0	178.0	188.0	185.0	6.0	36.0	5.0	4.5	4.8		
39	190.0	180.0	190.0	189.0	2.0	4.0	4.5	4.5	4.8		
40	197.0	187.0	197.0	193.5	7.0	49.0	5.9	4.5	4.9		
41	204.0	194.0	204.0	200.5	7.0	49.0	6.4	4.6	4.9		
42	210.0	200.0	210.0	207.0	6.0	36.0	6.7	4.6	5.0		
43	214.0	204.0	214.0	212.0	4.0	16.0	5.9	4.6	5.0		
44	220.0	210.0	220.0	217.0	6.0	36.0	5.5	4.7	5.0		
45	225.0	215.0	225.0	222.5	5.0	25.0	5.1	4.7	5.0		
46	230.0	220.0	230.0	227.5	5.0	25.0	5.4	4.7	5.0		
*Top la	yer only, fi	rst blow not in	cluded							[mm/blow]	4.38
									E'	[MPa]	232.52
									DPI5 ⁴	[mm/blow]	4 76

5.0		
5.0		
DPI5 ¹	[mm/blow]	4.38
E1	[MPa]	232.52
DPI5 ²	[mm/blow]	4.76
E ²	[MPa]	212.87

Dynam	ic Cone Pe	netrometer					Soil	Target	Actual	Actual	Trial
							Origin	Density	Moisture	Desnity	No.
							Red Lake Falls	103%	48.6%	100.9%	2
Depth	of cone bel	ow surface at	start [mm]:		3						201
		Cone	lotal	Average		DD12	Three Blow	Non-Weighted	Weighted	Average	DPI X
BIOW	Reading	Deptn	Cone	Cone	DPI	DPI	vveighted	Average DPI"	Average DPI*	DPI	Average DPI
	[mm]	From Start	Depth [mm]	Depth [mm]	[mm/blow]	[mm ² /blow ²]	Average DPI	[mm/blow]	[mm/blow]	[mm/blow]	[mm ² /blou ²]
	[iiiii] 3.0	0.0	[1111] 3.0	[11111] 	[1111/010W]		[1111/010W]	[1111/010W]	[1111/010W]	[1111/010W]	
1	16.0	13.0	16.0	9.5	13.0	169.0					
2	20.0	17.0	20.0	18.0	4.0	16.0		4.0	4.0		
3	25.0	22.0	25.0	22.5	5.0	25.0	9.5	4.5	4.6	4.5	22.5
4	30.0	27.0	30.0	27.5	5.0	25.0	4.7	4.7	4.7	5.0	25.0
5	33.0	30.0	33.0	31.5	3.0	9.0	4.5	4.3	4.4	4.0	12.0
6	37.0	34.0	37.0	35.0	4.0	16.0	4.2	4.2	4.3	3.5	14.0
7	42.0	39.0	42.0	39.5	5.0	25.0	4.2	4.3	4.5	4.5	22.5
8	45.0	42.0	45.0	43.5	3.0	9.0	4.2	4.1	4.3	4.0	12.0
9	50.0	47.0	50.0	47.5	5.0	25.0	4.5	4.3	4.4	4.0	20.0
10	55.0	52.0	55.0	52.5	5.0	25.0	4.5	4.3	4.5	5.0	25.0
11	59.0	56.0	59.0	57.0	4.0	16.0	4.7	4.3	4.4	4.5	18.0
12	65.0	62.0	65.0	62.0	6.0	36.0	5.1	4.5	4.6	5.0	30.0
13	70.0	67.0	70.0	67.5	5.0	25.0	5.1	4.5	4.7		
14	75.0	72.0	75.0	72.5	5.0	25.0	5.4	4.5	4.7		
15	78.0	75.0	78.0	76.5	3.0	9.0	4.5	4.4	4.6		
16	81.0	78.0	81.0	79.5	3.0	9.0	3.9	4.3	4.5		
17	86.0	83.0	86.0	83.5	5.0	25.0	3.9	4.4	4.6		
18	90.0	87.0	90.0	88.0	4.0	16.0	4.2	4.4	4.5		
19	95.0	92.0	95.0	92.5	5.0	25.0	4.7	4.4	4.6		
20	99.0	96.0	99.0	97.0	4.0	16.0	4.4	4.4	4.5		
21	104.0	101.0	104.0	101.5	5.0	25.0	4.7	4.4	4.6		
22	108.0	105.0	108.0	106.0	4.0	16.0	4.4	4.4	4.5		
23	113.0	110.0	113.0	110.5	5.0	25.0	4.7	4.4	4.6		
24	118.0	115.0	118.0	115.5	5.0	25.0	4.7	4.4	4.6		
25	124.0	121.0	124.0	121.0	6.0	36.0	5.4	4.5	4.7		
26	130.0	127.0	130.0	127.0	6.0	36.0	5.7	4.6	4.7		
27	135.0	132.0	135.0	132.5	5.0	25.0	5.7	4.6	4.7		
20	140.0	142.0	140.0	142 5	5.0	25.0	5.4	4.0	4.0		
20	143.0	142.0	145.0	142.5	5.0	25.0	5.0	4.0	4.8		
31	155.0	152.0	155.0	152.5	5.0	25.0	5.0	4.6	4.8		
32	157.0	154.0	157.0	156.0	2.0	4.0	4.5	4.5	4.0		
33	162.0	159.0	162.0	159.5	5.0	25.0	4.5	4.6	4.8		
34	167.0	164.0	167.0	164.5	5.0	25.0	4.5	4.6	4.8		
35	172.0	169.0	172.0	169.5	5.0	25.0	5.0	4.6	4.8		
36	175.0	172.0	175.0	173.5	3.0	9.0	4.5	4.5	4.7		
37	179.0	176.0	179.0	177.0	4.0	16.0	4.2	4.5	4.7		
38	185.0	182.0	185.0	182.0	6.0	36.0	4.7	4.6	4.8		
39	188.0	185.0	188.0	186.5	3.0	9.0	4.7	4.5	4.7		
40	193.0	190.0	193.0	190.5	5.0	25.0	5.0	4.5	4.7		
41	196.0	193.0	196.0	194.5	3.0	9.0	3.9	4.5	4.7		
42	202.0	199.0	202.0	199.0	6.0	36.0	5.0	4.5	4.8		
43	209.0	206.0	209.0	205.5	7.0	49.0	5.9	4.6	4.8		
44	212.0	209.0	212.0	210.5	3.0	9.0	5.9	4.6	4.8		
45	218.0	215.0	218.0	215.0	6.0	36.0	5.9	4.6	4.8		
*Top la	iyer only, fii	rst blow not in	cluded						DPI5 ¹	[mm/blow]	4.36
									E'	[MPa]	233.50
									DDI5 ²	[mm/blow]	4.57

_	[iffi di]	200.00
DPI5 ²	[mm/blow]	4.57
E ²	[MPa]	222.56

Light Weight Deflectometer													
Q - 11	Target	Torgat	Actual	Astual	Teat	Drom	Dron			Dem	:-		Three Blow
Soli	Moisture	Target	Moisture	Actual	Test		Diop	Defl	ection	Dyn	amic	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
MnROAD	15	100	15.6	97.7	1	900	1	0.82	820.00	8.93	0.28	48.06	
MnROAD	15	100	15.6	97.7	1	900	2	0.84	844.00	8.99	0.29	47.01	
MnROAD	15	100	15.6	97.7	1	900	3	0.77	768.00	8.84	0.28	50.80	48.62
MnROAD	15	100	15.6	97.7	1	900	4	0.82	822.00	8.93	0.28	47.94	48.58
MnROAD	15	100	15.6	97.7	1	900	5	0.75	745.00	8.82	0.28	52.25	50.33
MnROAD	15	100	15.6	97.7	1	900	mean3-5	0.78	778.33	8.86	0.28	50.33	
MnROAD	15	100	15.6	97.7	1	900	stddev3-5	0.04	39.53	0.06	0.00	2.19	
MnROAD	15	100	15.6	97.7	1	900	coefvar3-5	5.08	5.08	0.66	0.66	4.35	
MnROAD	15	100	15.6	97.7	2	100	1						
MnROAD	15	100	15.6	97.7	2	100	2						
MnROAD	15	100	15.6	97.7	2	100	3						
MnROAD	15	100	15.6	97.7	2	100	4						
MnROAD	15	100	15.6	97.7	2	100	5						
MnROAD	15	100	15.6	97.7	2	100	mean3-5						
MnROAD	15	100	15.6	97.7	2	100	stddev3-5						
MnROAD	15	100	15.6	97.7	2	100	coefvar3-5						
MnROAD	12	100	11.5	99.2	1	900	1	0.21	209.00	9.20	0.29	194.27	
MnROAD	12	100	11.5	99.2	1	900	2	0.21	210.00	9.20	0.29	193.34	
MnROAD	12	100	11.5	99.2	1	900	3	0.21	206.00	9.07	0.29	194.31	193.97
MnROAD	12	100	11.5	99.2	1	900	4	0.21	213.00	9.18	0.29	190.20	192.62
MnROAD	12	100	11.5	99.2	1	900	5	0.21	213.00	9.26	0.29	191.86	192.12
MnROAD	12	100	11.5	99.2	1	900	mean3-5	0.21	210.67	9.17	0.29	192.12	
MnROAD	12	100	11.5	99.2	1	900	stddev3-5	0.00	4.04	0.10	0.00	2.07	
MnROAD	12	100	11.5	99.2	1	900	coefvar3-5	1.92	1.92	1.04	1.04	1.08	
MnROAD	12	100	11.5	99.2	2	100	1						
MnROAD	12	100	11.5	99.2	2	100	2						
MnROAD	12	100	11.5	99.2	2	100	3						
MnROAD	12	100	11.5	99.2	2	100	4						
MnROAD	12	100	11.5	99.2	2	100	5						
MnROAD	12	100	11.5	99.2	2	100	mean3-5						
MnROAD	12	100	11.5	99.2	2	100	stddev3-5						
MnROAD	12	100	11.5	99.2	2	100	coefvar3-5						
MnROAD	9	100	10.9	93.5	1	900	1	0.20	196.00	9.29	0.30	209.18	
MnROAD	9	100	10.9	93.5	1	900	2	0.19	193.00	9.07	0.29	207.40	
MnROAD	9	100	10.9	93.5	1	900	3	0.19	186.00	9.17	0.29	217.58	211.38
MnROAD	9	100	10.9	93.5	1	900	4	0.20	197.00	8.90	0.28	199.38	208.12
MnROAD	9	100	10.9	93.5	1	900	5	0.20	197.00	9.17	0.29	205.43	207.46
MnROAD	9	100	10.9	93.5	1	900	mean3-5	0.19	193.33	9.08	0.29	207.46	
MnROAD	9	100	10.9	93.5	1	900	stddev3-5	0.01	6.35	0.16	0.00	9.27	
MnROAD	9	100	10.9	93.5	1	900	coefvar3-5	3.28	3.28	1.72	1.72	4.47	
MnROAD	9	100	10.9	93.5	2	100	1						
MnROAD	9	100	10.9	93.5	2	100	2						
MnROAD	9	100	10.9	93.5	2	100	3						
MnROAD	9	100	10.9	93.5	2	100	4						
MnROAD	9	100	10.9	93.5	2	100	5						
MnROAD	9	100	10.9	93.5	2	100	mean3-5						
MnROAD	9	100	10.9	93.5	2	100	stddev3-5						
MnROAD	9	100	10.9	93.5	2	100	coefvar3-5						
					Lig	ht Weight De	eflectometer						
--------	----------	---------	----------	---------	-------	--------------	--------------	------	--------	------	--------	---------	------------
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Drm	amia		Three Blow
Oninin	Moisture	Danaita	Moisture	Densita	Deint	Diop	Neuchar	Defl	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress	1	Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
MnROAD	13.5	105	14.1	103.1	1	900	1	0.16	157.00	9.06	0.29	254.67	
MnROAD	13.5	105	14.1	103.1	1	900	2	0.17	172.00	9.25	0.29	237.34	
MnROAD	13.5	105	14.1	103.1	1	900	3	0.17	167.00	9.19	0.29	242.86	244.96
MnROAD	13.5	105	14.1	103.1	1	900	4	0.17	168.00	9.25	0.29	242.99	241.06
MnROAD	13.5	105	14.1	103.1	1	900	5	0.16	157.00	8.99	0.29	252.71	246.18
MnROAD	13.5	105	14.1	103.1	1	900	mean3-5	0.16	164.00	9.14	0.29	246.18	
MnROAD	13.5	105	14.1	103.1	1	900	stddev3-5	0.01	6.08	0.14	0.00	5.65	
MnROAD	13.5	105	14.1	103.1	1	900	coefvar3-5	3.71	3.71	1.49	1.49	2.29	
MnROAD	13.5	105	14.1	103.1	2	100	1						
MnROAD	13.5	105	14.1	103.1	2	100	2						
MnROAD	13.5	105	14.1	103.1	2	100	3						
MnROAD	13.5	105	14.1	103.1	2	100	4						
MnROAD	13.5	105	14.1	103.1	2	100	5						
MnROAD	13.5	105	14.1	103.1	2	100	mean3-5						
MnROAD	13.5	105	14.1	103.1	2	100	stddev3-5						
MnROAD	13.5	105	14.1	103.1	2	100	coefvar3-5						
MnROAD	10.5	105	11.2	98.8	1	900	1	0.17	168.00	9.15	0.29	240.36	
MnROAD	10.5	105	11.2	98.8	1	900	2	0.17	169.00	8.99	0.29	234.76	
MnROAD	10.5	105	11.2	98.8	1	900	3	0.17	172.00	9.25	0.29	237.34	237.49
MnROAD	10.5	105	11.2	98.8	1	900	4	0.19	187.00	9.15	0.29	215.94	229.35
MnROAD	10.5	105	11.2	98.8	1	900	5	0.16	157.00	9.19	0.29	258.33	237.20
MnROAD	10.5	105	11.2	98.8	1	900	mean3-5	0.17	172.00	9.20	0.29	237.20	
MnROAD	10.5	105	11.2	98.8	1	900	stddev3-5	0.02	15.00	0.05	0.00	21.19	
MnROAD	10.5	105	11.2	98.8	1	900	coefvar3-5	8.72	8.72	0.55	0.55	8.93	
MnROAD	10.5	105	11.2	98.8	2	100	1						
MnROAD	10.5	105	11.2	98.8	2	100	2						
MnROAD	10.5	105	11.2	98.8	2	100	3						
MnROAD	10.5	105	11.2	98.8	2	100	4						
MnROAD	10.5	105	11.2	98.8	2	100	5						
MnROAD	10.5	105	11.2	98.8	2	100	mean3-5						
MnROAD	10.5	105	11.2	98.8	2	100	stddev3-5						
MnROAD	10.5	105	11.2	98.8	2	100	coefvar3-5						
MnROAD	7.5	105	7.7	98.3	1	900	1	0.38	380.00	8.91	0.28	103.48	
MnROAD	7.5	105	7.7	98.3	1	900	2	0.38	381.00	9.10	0.29	105.41	
MnROAD	7.5	105	7.7	98.3	1	900	3	0.42	421.00	8.75	0.28	91.72	100.20
MnROAD	7.5	105	7.7	98.3	1	900	4	0.38	381.00	9.07	0.29	105.06	100.73
MnROAD	7.5	105	7.7	98.3	1	900	5	0.39	386.00	8.50	0.27	97.18	97.99
MnROAD	7.5	105	7.7	98.3	1	900	mean3-5	0.40	396.00	8.77	0.28	97.99	
MnROAD	7.5	105	7.7	98.3	1	900	stddev3-5	0.02	21.79	0.29	0.01	6.70	
MnROAD	7.5	105	7.7	98.3	1	900	coefvar3-5	5.50	5.50	3.26	3.26	6.84	
MnROAD	7.5	105	7.7	98.3	2	100	1						
MnROAD	7.5	105	7.7	98.3	2	100	2						
MnROAD	7.5	105	7.7	98.3	2	100	3						
MnROAD	7.5	105	7.7	98.3	2	100	4						
MnROAD	7.5	105	7.7	98.3	2	100	5						
MnROAD	7.5	105	7.7	98.3	2	100	mean3-5						
MnROAD	7.5	105	7.7	98.3	2	100	stddev3-5						
MnROAD	7.5	105	7.7	98.3	2	100	coefvar3-5						

					Lig	ht Weight De	eflectometer						
Q - 11	Target	Torrat	Actual	Astrol	Test	Deve	Dava			Dree	:-		Three Blow
Soli	Moisture	Target	Moisture	Actual	Test	Drop	Drop	Defle	ection	Dyn	amic	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress	1	Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Duluth	27	98	26.1	103	1	100	1	0.09	93.00	2.86	0.09	135.72	
Duluth	27	98	26.1	103	1	100	2	0.09	93.00	2.86	0.09	135.72	
Duluth	27	98	26.1	103	1	100	3	0.08	83.00	2.92	0.09	155.26	142.23
Duluth	27	98	26.1	103	1	100	4	0.08	83.00	2.92	0.09	155.26	148.75
Duluth	27	98	26.1	103	1	100	5	0.09	87.00	2.92	0.09	148.12	152.88
Duluth	27	98	26.1	103	1	100	mean3-5	0.08	84.33	2.92	0.09	152.88	
Duluth	27	98	26.1	103	1	100	stddev3-5	0.00	2.31	0.00	0.00	4.12	
Duluth	27	98	26.1	103	1	100	coefvar3-5	2.74	2.74	0.00	0.00	2.70	
Duluth	27	98	26.1	103	2	100	1	0.07	71.00	2.93	0.09	182.12	
Duluth	27	98	26.1	103	2	100	2	0.08	81.00	2.91	0.09	158.55	
Duluth	27	98	26.1	103	2	100	3	0.08	75.00	2.92	0.09	171.82	170.83
Duluth	27	98	26.1	103	2	100	4	0.07	68.00	2.92	0.09	189.51	173.29
Duluth	27	98	26.1	103	2	100	5	0.08	75.00	2.93	0.09	172.41	177.91
Duluth	27	98	26.1	103	2	100	mean3-5	0.07	72.67	2.92	0.09	177.91	
Duluth	27	98	26.1	103	2	100	stddev3-5	0.00	4.04	0.01	0.00	10.05	
Duluth	27	98	26.1	103	2	100	coefvar3-5	5.56	5.56	0.20	0.20	5.65	
Duluth	27	98	26.1	103	3	100	1	0.07	72.00	2.55	0.08	156.30	
Duluth	27	98	26.1	103	3	100	2	0.07	71.00	2.47	0.08	153.53	
Duluth	27	98	26.1	103	3	100	3	0.08	76.00	2.60	0.08	150.98	153.60
Duluth	27	98	26.1	103	3	100	4	0.07	67.00	2.48	0.08	163.35	155.95
Duluth	27	98	26.1	103	3	100	5	0.07	67.00	2.58	0.08	169.94	161.42
Duluth	27	98	26.1	103	3	100	mean3-5	0.07	70.00	2.55	0.08	161.42	
Duluth	27	98	26.1	103	3	100	stddev3-5	0.01	5.20	0.06	0.00	9.63	
Duluth	27	98	26.1	103	3	100	coefvar3-5	7.42	7.42	2.52	2.52	5.96	
Duluth	27	98	26.1	103	1	500	1	0.15	151.00	4.65	0.15	135.90	
Duluth	27	98	26.1	103	1	500	2	0.15	152.00	4.66	0.15	135.30	
Duluth	27	98	26.1	103	1	500	3	0.15	154.00	4.64	0.15	132.97	134.72
Duluth	27	98	26.1	103	1	500	4	0.15	151.00	4.60	0.15	134.44	134.24
Duluth	27	98	26.1	103	1	500	5	0.15	149.00	4.68	0.15	138.62	135.34
Duluth	27	98	26.1	103	1	500	mean3-5	0.15	151.33	4.64	0.15	135.34	
Duluth	27	98	26.1	103	1	500	stddev3-5	0.00	2.52	0.04	0.00	2.93	
Duluth	27	98	26.1	103	1	500	coefvar3-5	1.66	1.66	0.86	0.86	2.16	
Duluth	27	98	26.1	103	2	500	1	0.14	141.00	5.30	0.17	165.89	
Duluth	27	98	26.1	103	2	500	2	0.15	145.00	5.29	0.17	161.01	
Duluth	27	98	26.1	103	2	500	3	0.14	143.00	5.35	0.17	165.11	164.00
Duluth	27	98	26.1	103	2	500	4	0.14	143.00	5.29	0.17	163.26	163.12
Duluth	27	98	26.1	103	2	500	5	0.14	142.00	5.32	0.17	165.34	164.57
Duluth	27	98	26.1	103	2	500	mean3-5	0.14	142.67	5.32	0.17	164.57	
Duluth	27	98	26.1	103	2	500	stddev3-5	0.00	0.58	0.03	0.00	1.14	
Duluth	27	98	26.1	103	2	500	coefvar3-5	0.40	0.40	0.56	0.56	0.69	
Duluth	27	98	26.1	103	3	500	1	0.13	134.00	4.82	0.15	158.74	
Duluth	27	98	26.1	103	3	500	2	0.13	127.00	4.92	0.16	170.97	
Duluth	27	98	26.1	103	3	500	3	0.16	160.00	4.73	0.15	130.47	153.39
Duluth	27	98	26.1	103	3	500	4	0.13	129.00	4.87	0.16	166.61	156.01
Duluth	27	98	26.1	103	3	500	5	0.13	126.00	4.90	0.16	171.62	156.23
Duluth	27	98	26.1	103	3	500	mean3-5	0.14	138.33	4.83	0.15	156.23	
Duluth	27	98	26.1	103	3	500	stddev3-5	0.02	18.82	0.09	0.00	22.46	
Duluth	27	98	26.1	103	3	500	coefvar3-5	13.61	13.61	1.88	1.88	14.37	

Sail Origin Content ContentAndrail Mosting DecimentAndra Point PointDecip NumberDecip NumberDeciment NumberDeciment NumberDeciment NumberDeciment Low<						Lig	ht Weight De	eflectometer						
Motione Motione Noise is an interact of a sector of a se	Sail	Target	Target	Actual	Actual	Test	Dron	Dron			Drm	amia		Three Blow
ContentContentContentContentRegulNumePromeFromLandStressTote MachineDaluhn27682610311900110.2726707.190.23118.10Daluhn226826.11031190020.2726707.100.23117.01Daluhn226826.11031190020.2726.007.100.23117.81Daluhn226826.11031190040.2828.006.860.22110.83Daluhn236826.1103119000.2027.007.070.23113.81Daluhn239826.1103119000.0020.0127.107.300.23113.83Daluhn279826.110312900100.2227.007.300.23145.22144.92Daluhn279826.11032.290030.2322.007.330.23145.22144.92Daluhn279826.11032.290050.2322.307.330.23145.23145.23Daluhn279826.11032.290050.2322.307.330.23145.23145.23Daluhn279826.110.32.3900	Origin	Moisture	Density	Moisture	Density	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
bisbisbisbisbisbisbisbisbisbisbisbisbisbisbisDalah278926.1103190020.27270.07.190.23117.81118.91Dalah279826.1103190030.27271.007.200.23117.85118.91117.89Dalah279826.1103190040.26256.007.070.23117.85117.85Dalah279826.11031900resolve21.937.040.22117.85Dalah279826.11031900resolve3.0110.660.170.170.166.5Dalah279826.11031900resolve3.013	Origin	Content	Density	Content	Density	Politi	Height	Number			Load	Stress		Modulus
Databat279826.1103119001.00.2726.007.190.23117.8111Databat279826.11031190020.2726.007.200.23117.71117.85Databat279826.11031190040.2626.007.200.23117.81117.85Databat279826.11031190040.2327.107.200.23117.81Databat279826.110311900500.2727.337.400.22117.85Databat279826.110312900stat27.213.9127.4127.4427.445.84Databat279826.11032.290010.2222.1007.320.23144.92Databat279826.11032.29002.00.2322.5007.330.23144.22Databat279826.11032.2900stat2.257.330.23144.21Databat279826.11032.2900stat2.257.330.23144.21Databat279826.11032.2900stat2.257.330.23144.21Databat279826.11032.3900st		[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
DatabatiQ20Q20Q20Q200	Duluth	27	98	26.1	103	1	900	1	0.27	267.00	7.19	0.23	118.84	
Datum279826.11031190030.27271.007.200.23117.257.118.00Datum279826.11031190040.26281.007.070.23117.35117.35Datum2779826.11031190040.26285.006.860.22118.39Datum2779826.110311900encarts5.0110.690.170.016.65Datum2779826.110312900100.22215.007.320.33144.025.03Datum2779826.1103290020.2022.007.330.23145.22160.65Datum2779826.1103290040.23225.007.330.33145.72146.06Datum2779826.11032900130.23125.007.330.33145.72146.06Datum2779826.1103290090130.23123.03145.13117.13117.33Datum2779826.11032900130.23123.03145.13117.13113.13113.13113.13113.13113.13113.13113.13113.13113.13113.13113.13113.13113.13113.13113.1	Duluth	27	98	26.1	103	1	900	2	0.27	268.00	7.16	0.23	117.91	
Datuhen279826.11031190040.20254.07.00.23118.19117.78Datuhen279826.11031900500.22273.337.040.22113.891Datuhen279826.11031900studer.350.27273.337.040.22113.891Datuhen279826.11031900studer.350.0110.2310.170.016.651Datuhen279826.11032900100.022107.320.23145.73145.75Datuhen279826.1103290030.2222007.330.23145.75146.75Datuhen279826.1103290030.23225.007.330.33143.75144.22Datuhen279826.1103290050.23225.337.330.23145.75145.75Datuhen279826.11032900studer.350.003.007.300.23145.75Datuhen279826.11033900110.19183.007.002.23145.31Datuhen279826.11033900110.19183.007.002.23145.31Dat	Duluth	27	98	26.1	103	1	900	3	0.27	271.00	7.20	0.23	117.25	118.00
Daluh 27 98 26.1 103 10 900 es.5 0.27 27.3 7.40 0.22 113.89 Daluh 27 98 26.1 103 1 900 exide/2.5 0.01 10.9 0.17 0.01 6.55 Daluh 27 98 26.1 103 2 900 col.55 3.91 3.91 2.44 2.44 5.54 Daluh 27 98 26.1 103 2 900 1 0.22 21.50 7.33 0.23 145.2 140.6 Daluh 27 98 26.1 103 2 900 3 0.22 22.00 7.33 0.23 145.2 140.6 Daluh 27 98 26.1 103 22 900 es.5 0.23 7.33 0.23 142.0 141.51 Daluh 27 98 26.1 103 20 0.00 0.35 0.01	Duluth	27	98	26.1	103	1	900	4	0.26	264.00	7.07	0.23	118.19	117.78
Daluh 27 98 26.1 103 1 900 mean 3-5 0.2 27.3.3 7.04 0.22 113.89 Daluh 27 98 26.1 103 1 900 scoreshar 3-5 3.91 3.91 2.44 2.44 5.84 - Daluh 27 98 26.1 103 2 900 1 0.22 212.00 7.33 0.23 135.05 Daluh 27 98 26.1 103 2 900 4 0.22 22.00 7.33 0.23 145.27 146.96 Daluh 27 98 26.1 103 2 900 5 0.23 22.33 7.33 0.23 147.27 146.96 Daluh 27 98 26.1 103 2 900 scolersh 5 0.33 100 0.22 164.2 164.2 Daluh 27 98 26.1 103 3 900	Duluth	27	98	26.1	103	1	900	5	0.29	285.00	6.86	0.22	106.23	113.89
Datuh 27 98 26.1 103 1 900 esidev.3-5 301 10.69 0.17 0.01 6.65 Datuh 27 98 26.1 103 22 900 1 0.22 215.00 7.32 0.23 150.25 Datuh 27 98 26.1 103 22 900 3 0.22 215.00 7.32 0.23 144.92 Datuh 27 98 26.1 103 22 900 4 0.23 225.00 7.33 0.23 145.23 143.51 Datuh 27 98 26.1 103 22 900 excl<3 23.5 7.33 0.23 142.03 144.92 Datuh 27 98 26.1 103 22 900 excl<3 0.00 3.55 0.62 0.62 0.62 1.65 0.62 0.62 1.65 0.62 0.62 1.65 0.62 1.65 0.62	Duluth	27	98	26.1	103	1	900	mean3-5	0.27	273.33	7.04	0.22	113.89	
Daluh 97 98 26.1 103 2 900 1 0.22 0.215 7.3 0.23 150.25 Daluh 77 98 26.1 103 2 900 1 0.22 221.00 7.33 0.23 145.92 Daluh 77 98 26.1 103 2 900 4 0.23 222.00 7.33 0.23 145.72 146.96 Daluh 77 98 26.1 103 2 900 4 0.23 222.00 7.37 0.23 142.79 144.25 Daluh 77 98 26.1 103 2 900 mem.5 0.23 225.50 7.33 0.23 142.79 143.51 Daluh 727 98 26.1 103 3 900 21.56 156 0.62 0.62 167.25 Daluh 27 98 26.1 103 3 900 4 0.29	Duluth	27	98	26.1	103	1	900	stddev3-5	0.01	10.69	0.17	0.01	6.65	
Datuh 97 98 26.1 103 22 900 1 0.22 215.00 7.32 0.23 150.25 Datuh 97 98 26.1 103 22 900 3 0.22 222.00 7.33 0.23 144.92 Datuh 97 98 26.1 103 22 900 4 0.23 222.00 7.33 0.23 142.03 144.92 Datuh 27 98 26.1 103 2 900 stant 5 0.33 225.60 7.33 0.23 143.51 Datuh 27 98 26.1 103 2 900 stadev3.5 0.00 3.51 0.05 0.01 0.12 167.22 167.23 Datuh 27 98 26.1 103 3 900 4 0.20 185.0 7.01 0.23 160.11 164.94 Datuh 27 98 26.1 103 3 <td>Duluth</td> <td>27</td> <td>98</td> <td>26.1</td> <td>103</td> <td>1</td> <td>900</td> <td>coefvar3-5</td> <td>3.91</td> <td>3.91</td> <td>2.44</td> <td>2.44</td> <td>5.84</td> <td></td>	Duluth	27	98	26.1	103	1	900	coefvar3-5	3.91	3.91	2.44	2.44	5.84	
Daluh 97 98 26.1 103 2 900 2 0.22 222.00 7.39 0.23 145.92 Daluh 97 98 26.1 103 2 900 4 0.23 222.00 7.37 0.23 145.72 145.03 144.22 Daluh 27 98 26.1 103 2 900 4 0.23 225.03 7.73 0.23 143.51 Daluh 27 98 26.1 103 2 900 estation 3.51 0.05 0.00 141.23 Daluh 27 98 26.1 103 3 900 1 0.19 185.00 7.01 0.22 163.2 103.2 104.04 Daluh 27 98 26.1 103 3 900 4 0.20 18.00 7.00 0.22 163.2 163.2 163.2 163.2 164.94 Daluh 27 98 26.1	Duluth	27	98	26.1	103	2	900	1	0.22	215.00	7.32	0.23	150.25	
Datuh 27 98 26.1 103 2 990 3 0.22 22.00 7.33 0.23 145.72 146.96 Datuh 27 98 26.1 103 2 990 4 0.23 22.900 7.37 0.23 142.99 143.51 Datuh 27 98 26.1 103 2 990 scal.3 0.03 143.51 Datuh 27 98 26.1 103 2 990 scdal.3 0.00 3.51 0.05 0.00 1.94 Datuh 27 98 26.1 103 3 900 1 0.18 185.00 7.01 0.23 167.22 167.22 164.94 104 164.94 104 164.94 104.94 164.94 104.94 164.94 104.94 164.94 104.94 164.94 164.94 164.94 164.94 164.94 164.94 164.94 164.94 164.94 164.94 164.94	Duluth	27	98	26.1	103	2	900	2	0.22	222.00	7.29	0.23	144.92	
Daluh 27 98 26.1 103 22 990 4 0.23 229.00 7.37 0.23 142.03 144.42 Daluh 27 98 26.1 103 2 900 \$ 0.23 225.00 7.38 0.23 143.51 Daluh 27 98 26.1 103 2 900 scidev3.5 0.00 3.51 0.05 0.00 1.94 Daluh 27 98 26.1 103 3 900 1 0.19 185.00 7.01 0.22 167.22 Daluh 27 98 26.1 103 3 900 4 0.20 183.00 7.07 0.23 160.01 163.22 167.22	Duluth	27	98	26.1	103	2	900	3	0.22	222.00	7.33	0.23	145.72	146.96
Dauluh 27 98 26.1 103 22 990 5 0.23 225.00 7.28 0.23 143.51 Daluh 27 98 26.1 103 2 900 siddev3.5 0.00 3.51 0.05 0.00 143 Daluh 27 98 26.1 103 2 900 siddev3.5 0.00 3.51 0.05 0.00 1.94 Daluh 27 98 26.1 103 3 900 1 0.19 185.00 7.07 0.23 167.22 Daluh 27 98 26.1 103 3 900 3 0.19 188.00 7.07 0.23 161.01 163.24 167.35 Daluh 27 98 26.1 103 3 900 mean3.5 0.19 199.07 7.02 0.22 163.22 167.32 Daluh 27 98 26.1 103 3 900 sd	Duluth	27	98	26.1	103	2	900	4	0.23	229.00	7.37	0.23	142.03	144.22
Daluh 27 98 26.1 103 22 990 meah3.5 0.23 223.33 7.33 0.23 143.51 Daluh 27 98 26.1 103 2 900 side/3.5 0.00 3.51 0.05 0.00 1.36 Daluh 27 98 26.1 103 3 900 1 0.19 185.00 7.01 0.22 167.22 167.22 Daluh 27 98 26.1 103 3 900 4 0.20 195.00 7.00 0.22 164.32 167.35 Daluh 27 98 26.1 103 3 900 5 0.19 198.00 6.09 0.22 163.22 165.25 Daluh 27 98 26.1 103 3 900 scddv3.5 109 1.00 2 163.22 163.22 165.25 Daluh 27 98 22 103.9 1 1	Duluth	27	98	26.1	103	2	900	5	0.23	225.00	7.28	0.23	142.79	143.51
Daubh 27 98 26.1 103 22 990 stdder3-5 0.00 3.51 0.05 0.00 1.44 Daubh 27 98 26.1 103 3 900 coff-size 1.56 1.56 0.62 0.62 1.66 1.66 Daubh 27 98 26.1 103 3 900 2 0.18 183.00 7.07 0.23 167.22 Daubh 27 98 26.1 103 3 900 4 0.20 185.00 7.07 0.23 166.32 167.35 Daubh 27 98 26.1 103 3 900 maints 0.19 189.00 6.70 0.22 162.22 162.22 Daubh 27 98 26.1 103 3 900 maints 0.19 190.67 7.02 0.22 163.22 162.21 163.2 Daubh 22 98 22 103.9	Duluth	27	98	26.1	103	2	900	mean3-5	0.23	225.33	7.33	0.23	143.51	
Databa 27 98 26.1 103 22 990 ccefvar3-5 1.56 1.56 0.62 0.62 1.36 Databa 27 98 26.1 103 3 900 1 0.19 185.00 7.01 0.22 167.52 Databa 27 98 26.1 103 3 900 2 0.18 183.00 7.00 0.22 167.32 167.35 Databa 27 98 26.1 103 3 900 4 0.20 195.00 6.09 0.22 163.23 167.35 Databa 27 98 26.1 103 3 900 rem3.5 0.19 189.00 6.99 0.22 162.2 162.52 Databa 27 98 26.1 103 3 900 ccatr3.5 0.10 1.90 0.62 0.62 0.162 1.62.52 Databa 22 98 22 103.9 1	Duluth	27	98	26.1	103	2	900	stddev3-5	0.00	3.51	0.05	0.00	1.94	
Daulah 27 98 26.1 103 3 900 1 0.19 185.00 7.01 0.22 167.22 Inclusion Daulah 27 98 26.1 103 3 900 2 0.18 183.00 7.07 0.23 170.50 Daulah 27 98 26.1 103 3 900 4 0.20 195.00 7.07 0.23 166.32 167.32 Daulah 27 98 26.1 103 3 900 5.0 0.19 189.00 6.99 0.22 165.32 162.52 Daulah 27 98 26.1 103 3 900 scan25 1.99 1.04 0.00 2.24 165.22 165.22 165.22 165.22 165.22 165.23 165.24 165.24 165.24 165.24 165.24 165.24 165.24 165.24 165.24 165.24 165.24 165.25 165.24 165.25 165.24	Duluth	27	98	26.1	103	2	900	coefvar3-5	1.56	1.56	0.62	0.62	1.36	
Daluth 27 98 26.1 103 3 900 2 0.18 183.00 7.07 0.23 170.50 Daluth 27 98 26.1 103 3 900 3 0.19 188.00 7.07 0.23 160.13 164.32 Daluth 27 98 26.1 103 3 900 5 0.19 189.00 6.99 0.22 165.322 162.32 Daluth 27 98 26.1 103 3 900 state 199 196.67 7.02 0.22 165.22 162.52 Daluth 27 98 26.1 103 3 900 stddev3-5 0.00 3.79 0.04 0.00 2.24 163.22 162.52 Daluth 22 98 22 103.9 1 100 2 0.11 119.00 2.64 0.08 100.72 Daluth 22 98 22 103.9	Duluth	27	98	26.1	103	3	900	1	0.19	185.00	7.01	0.22	167.22	
Duluth 27 98 26.1 103 3 900 3 0.19 188.00 7.00 0.22 164.32 167.35 Duluth 27 98 26.1 103 3 900 4 0.20 195.00 7.07 0.23 160.01 164.94 Duluth 27 98 26.1 103 3 900 5 0.19 198.00 6.99 0.22 163.22 162.52 Duluth 27 98 26.1 103 3 900 ccefvar3-5 0.19 190.67 7.02 0.022 163.22 162.52 Duluth 27 98 26.1 103 3 900 ccefvar3-5 1.99 1.99 0.62 0.62 1.38 Duluth 22 98 22 103.9 1 100 2 0.11 112.00 2.64 0.08 107.29 Duluth 22 98 22 103.9 1	Duluth	27	98	26.1	103	3	900	2	0.18	183.00	7.07	0.23	170.50	
Duluth 27 98 26.1 103 3 900 4 0.20 195.00 7.07 0.23 160.01 164.94 Duluth 27 98 26.1 103 3 900 real 0.19 189.00 6.99 0.22 163.22 162.52 Duluth 27 98 26.1 103 3 900 real 5 0.19 189.07 7.02 0.22 163.22 162.52 Duluth 27 98 26.1 103 3 900 real/star 1.99 1.04 0.02 0.62 0.62 1.38 Duluth 22 98 22 103.9 1 100 2 0.11 109.00 2.65 0.08 107.39 Duluth 22 98 22 103.9 1 100 4 0.11 110.00 2.65 0.08 104.03 103.36 Duluth 22 98 22 <t< td=""><td>Duluth</td><td>27</td><td>98</td><td>26.1</td><td>103</td><td>3</td><td>900</td><td>3</td><td>0.19</td><td>188.00</td><td>7.00</td><td>0.22</td><td>164.32</td><td>167.35</td></t<>	Duluth	27	98	26.1	103	3	900	3	0.19	188.00	7.00	0.22	164.32	167.35
Duluth 27 98 26.1 103 3 900 5 0.12 189.00 6.99 0.22 163.22 152.32 Duluth 27 98 26.1 103 3 900 stdew/s-5 0.19 190.67 7.02 0.22 163.22 152.32 Duluth 27 98 26.1 103 3 900 stdew/s-5 0.00 3.79 0.44 0.00 2.24 162.32 Duluth 27 98 26.1 103 3 900 colervar3-5 1.99 1.99 0.62 0.62 1.38 Duluth 22 98 22 103.9 1 100 2 0.11 119.00 2.65 0.08 104.03 103.95 Duluth 22 98 22 103.9 1 100 4 0.11 110.00 2.64 0.08 104.52 105.95 10.10 10.10 10.11 110.00 2.64	Duluth	27	98	26.1	103	3	900	4	0.20	195.00	7.07	0.23	160.01	164 94
Duluth 27 98 26.1 103 3 900 mean3-5 0.19 100.67 7.02 0.22 162.52 100.00 Duluth 27 98 26.1 103 3 900 mean3-5 0.19 100.67 7.02 0.22 162.52 100.00 22.4 Duluth 27 98 26.1 103 3 900 counts/3.5 1.99 1.99 0.62 0.62 0.33 1.00 1.00 1 0.12 115.00 2.62 0.08 100.54 Duluth 22 98 22 103.9 1 100 2 0.11 119.00 2.65 0.08 100.29 100 Duluth 22 98 22 103.9 1 100 4 0.11 110.00 2.68 0.09 107.52 106.28 Duluth 22 98 22 103.9 1 100 mean3-5 0.11 1112.00	Duluth	27	98	26.1	103	3	900	5	0.19	189.00	6.99	0.22	163.22	162.52
Datath 27 98 26.1 1023 2 000 stddev3-5 0.00 3.79 0.04 0.00 2.24 Dututh 27 98 26.1 103 3 900 stddev3-5 0.00 3.79 0.04 0.00 2.24 Dututh 22 98 22 103.9 1 100 1 0.12 115.00 2.62 0.08 100.54 Dututh 22 98 22 103.9 1 100 2 0.11 110.00 2.65 0.08 100.31 103.95 Dututh 22 98 22 103.9 1 100 4 0.11 110.00 2.68 0.09 107.52 105.36 Dututh 22 98 22 103.9 1 100 stdev3-5 0.11 114.00 2.70 0.09 105.36 Dututh 22 98 22 103.9 2 100 stdev3-5 0.12	Duluth	27	98	26.1	103	3	900	mean3-5	0.19	190.67	7.02	0.22	162.52	102.02
Duluth 27 98 26.1 103 3 900 Coefwar3-5 1.99 1.99 0.62 0.62 1.38 Duluth 22 98 22 103.9 1 100 1 0.12 115.00 2.62 0.08 100.54 Duluth 22 98 22 103.9 1 100 2 0.11 109.00 2.65 0.08 100.54 Duluth 22 98 22 103.9 1 100 4 0.11 112.00 2.64 0.08 104.03 103.95 Duluth 22 98 22 103.9 1 100 4 0.11 112.00 2.64 0.08 104.52 105.36 Duluth 22 98 22 103.9 1 100 stdev3.5 0.00 2.00 0.03 0.00 1.89 Duluth 22 98 22 103.9 1 100 cefva3.5	Duluth	27	98	26.1	103	3	900	stddev3-5	0.00	3 79	0.04	0.00	2.24	
Duluth 22 98 22 102 1 100 1 101 115.00 2.62 0.08 100.54 Duluth 22 98 22 103.9 1 100 2 0.11 115.00 2.62 0.08 100.54 Duluth 22 98 22 103.9 1 100 2 0.11 115.00 2.65 0.08 104.03 103.95 Duluth 22 98 22 103.9 1 100 4 0.11 112.00 2.64 0.08 104.03 103.95 Duluth 22 98 22 103.9 1 100 5 0.11 114.00 2.67 0.09 104.52 105.36 Duluth 22 98 22 103.9 1 100 stddev3-5 0.00 2.00 0.03 0.00 1.89 Duluth 22 98 22 103.9 2 100 2	Duluth	27	98	26.1	103	3	900	coefvar3-5	1 99	1 99	0.62	0.62	1 38	
Dalath 22 98 22 103.9 1 100 2 0.11 1109.00 2.65 0.08 107.29 Duluth 22 98 22 103.9 1 100 3 0.11 112.00 2.64 0.08 104.03 103.95 Duluth 22 98 22 103.9 1 100 4 0.11 110.00 2.65 0.09 107.22 106.28 Duluth 22 98 22 103.9 1 100 5 0.11 114.00 2.68 0.09 107.52 106.28 Duluth 22 98 22 103.9 1 100 mean3-5 0.11 112.00 2.67 0.09 105.36 Duluth 22 98 22 103.9 1 100 coferaris 5 1.79 1.79 1.14 1.14 1.80 Duluth 22 98 22 103.9 2 100 <	Duluth	22	98	22	103.9	1	100	1	0.12	115.00	2.62	0.02	100 54	
Daluth 22 98 22 103.9 1 100 3 0.11 112.00 2.64 0.08 104.03 103.95 Duluth 22 98 22 103.9 1 100 4 0.11 112.00 2.64 0.08 104.03 103.95 Duluth 22 98 22 103.9 1 100 5 0.11 114.00 2.70 0.09 104.52 105.36 Duluth 22 98 22 103.9 1 100 mean3-5 0.11 114.00 2.70 0.09 104.52 105.36 Duluth 22 98 22 103.9 1 100 coferar3-5 1.79 1.79 1.14 1.14 1.80 Duluth 22 98 22 103.9 2 100 2 0.16 155.00 2.74 0.09 78.01 Duluth 22 98 22 103.9 2 <	Duluth	22	98	22	103.9	1	100	2	0.11	109.00	2.65	0.08	107.29	
Duluth 22 98 22 103.9 1 100 4 0.11 110.00 2.68 0.09 107.52 106.28 Duluth 22 98 22 103.9 1 100 5 0.11 110.00 2.68 0.09 107.52 106.28 Duluth 22 98 22 103.9 1 100 standard standard 103.00 2.68 0.09 107.52 105.36 Duluth 22 98 22 103.9 1 100 stdder3-5 0.00 2.00 0.03 0.00 1.89 Duluth 22 98 22 103.9 2 100 1 0.18 179.00 2.61 0.08 64.35 Duluth 22 98 22 103.9 2 100 3 0.12 120.00 2.16 0.07 79.44 73.93 Duluth 22 98 22 103.9 2	Duluth	22	98	22	103.9	1	100	3	0.11	112.00	2.65	0.08	104.03	103 95
Duluth 22 98 22 103.9 1 100 5 0.11 114.00 2.00 0.09 104.52 105.36 Duluth 22 98 22 103.9 1 100 mean3-5 0.11 114.00 2.07 0.09 105.36 Duluth 22 98 22 103.9 1 100 stdev3-5 0.00 2.00 0.03 0.00 1.89 Duluth 22 98 22 103.9 1 100 stdev3-5 0.00 2.00 0.03 0.00 1.89 Duluth 22 98 22 103.9 2 100 1 0.18 17.90 1.14 1.14 1.80 Duluth 22 98 22 103.9 2 100 3 0.12 120.00 2.64 0.08 73.74 73.93 Duluth 22 98 22 103.9 2 100 5 0.16 <td>Duluth</td> <td>22</td> <td>98</td> <td>22</td> <td>103.9</td> <td>1</td> <td>100</td> <td>4</td> <td>0.11</td> <td>110.00</td> <td>2.68</td> <td>0.09</td> <td>107.52</td> <td>106.28</td>	Duluth	22	98	22	103.9	1	100	4	0.11	110.00	2.68	0.09	107.52	106.28
Duluth 22 98 22 103.9 1 100 mean3-5 0.11 111.00 2.00 0.03 0.00 1.89 Duluth 22 98 22 103.9 1 100 stdev3-5 0.00 2.00 0.03 0.00 1.89 Duluth 22 98 22 103.9 1 100 coefvar3-5 1.79 1.79 1.14 1.14 1.80 Duluth 22 98 22 103.9 2 100 1 0.18 179.00 2.61 0.08 64.35 Duluth 22 98 22 103.9 2 100 3 0.12 120.00 2.16 0.07 79.44 73.93 Duluth 22 98 22 103.9 2 100 4 0.16 160.00 2.64 0.08 73.74 75.33 Duluth 22 98 22 103.9 2 <th100< th=""> stdedv</th100<>	Duluth	22	98	22	103.9	1	100	5	0.11	114.00	2.70	0.09	104 52	105.36
Duluth 22 98 22 103.9 1 100 stidew3.5 0.00 2.00 0.00 1.000 1000 Duluth 22 98 22 103.9 1 100 stidew3.5 0.00 2.00 0.00 1.00 1000 Duluth 22 98 22 103.9 2 100 1 0.18 17.90 1.14 1.14 1.80 Duluth 22 98 22 103.9 2 100 1 0.18 179.00 2.61 0.08 64.35 Duluth 22 98 22 103.9 2 100 3 0.12 120.00 2.16 0.07 79.44 73.93 Duluth 22 98 22 103.9 2 100 4 0.16 160.00 2.64 0.08 73.74 75.33 Duluth 22 98 22 103.9 2 <th100< th=""> mema3-5 0.15</th100<>	Duluth	22	98	22	103.9	1	100	mean3-5	0.11	112.00	2.67	0.09	105.36	100.00
Duluth 22 98 22 103.9 1 100 coefwar3-5 1.79 1.79 1.14 1.14 1.80 Duluth 22 98 22 103.9 2 100 1 0.18 179.00 2.61 0.08 64.35 Duluth 22 98 22 103.9 2 100 2 0.16 155.00 2.74 0.09 78.01 Duluth 22 98 22 103.9 2 100 3 0.12 120.00 2.16 0.07 79.44 73.93 Duluth 22 98 22 103.9 2 100 4 0.16 160.00 2.64 0.08 73.34 75.33 Duluth 22 98 22 103.9 2 100 mean3-5 0.15 146.00 2.48 0.08 75.33 Duluth 22 98 22 103.9 2 100 coefwar3-5 15	Duluth	22	98	22	103.9	1	100	stddev3-5	0.00	2.00	0.03	0.00	1.89	
Duluth 22 98 22 103.9 2 100 1 0.18 177.0	Duluth	22	98	22	103.9	1	100	coefvar3-5	1 79	1 79	1 14	1 14	1.80	
Duluth 22 98 22 103.9 2 100 2 0.16 155.00 2.74 0.09 78.01 Duluth 22 98 22 103.9 2 100 3 0.12 120.00 2.16 0.07 79.44 73.93 Duluth 22 98 22 103.9 2 100 4 0.16 160.00 2.64 0.08 72.82 76.76 Duluth 22 98 22 103.9 2 100 5 0.16 158.00 2.64 0.08 73.74 75.33 Duluth 22 98 22 103.9 2 100 mean3-5 0.15 146.00 2.48 0.08 73.74 75.33 Duluth 22 98 22 103.9 2 100 restarts 0.15 146.00 2.48 0.08 75.33 Duluth 22 98 22 103.9 3 100<	Duluth	22	98	22	103.9	2	100	1	0.18	179.00	2.61	0.08	64.35	
Duluth 22 98 22 103.9 2 100 3 0.12 120.00 2.11 0.00 70.44 73.93 Duluth 22 98 22 103.9 2 100 3 0.12 120.00 2.11 0.00 79.44 73.93 Duluth 22 98 22 103.9 2 100 4 0.16 160.00 2.64 0.08 72.82 76.76 Duluth 22 98 22 103.9 2 100 5 0.16 158.00 2.64 0.08 73.74 75.33 Duluth 22 98 22 103.9 2 100 mean3-5 0.15 146.00 2.48 0.08 75.33 Duluth 22 98 22 103.9 2 100 cefvar3-5 15.44 11.17 11.17 4.76 Duluth 22 98 22 103.9 3 100 2 <td>Duluth</td> <td>22</td> <td>98</td> <td>22</td> <td>103.9</td> <td>2</td> <td>100</td> <td>2</td> <td>0.16</td> <td>155.00</td> <td>2.74</td> <td>0.09</td> <td>78.01</td> <td></td>	Duluth	22	98	22	103.9	2	100	2	0.16	155.00	2.74	0.09	78.01	
Duluth 22 98 22 103.9 2 100 4 0.16 1000 2.16 0.00 71.11 1000 Duluth 22 98 22 103.9 2 100 4 0.16 158.00 2.64 0.08 72.82 76.76 Duluth 22 98 22 103.9 2 100 5 0.16 158.00 2.64 0.08 72.82 76.76 Duluth 22 98 22 103.9 2 100 mean3-5 0.15 146.00 2.48 0.08 77.33 Duluth 22 98 22 103.9 2 100 mean3-5 0.02 22.54 0.28 0.01 3.59 Duluth 22 98 22 103.9 3 100 1 0.12 119.00 2.80 0.09 103.84 Duluth 22 98 22 103.9 3 100 2	Duluth	22	98	22	103.9	2	100	3	0.12	120.00	2.16	0.07	79.44	73 93
Duluth 22 98 22 103.9 2 100 5 0.16 100.0 2.64 0.08 73.74 75.33 Duluth 22 98 22 103.9 2 100 5 0.16 158.00 2.64 0.08 73.74 75.33 Duluth 22 98 22 103.9 2 100 state 0.15 146.00 2.48 0.08 73.74 75.33 Duluth 22 98 22 103.9 2 100 state 0.02 22.54 0.28 0.01 3.59 Duluth 22 98 22 103.9 2 100 coffwar3-5 15.44 15.44 11.17 11.17 4.76 Duluth 22 98 22 103.9 3 100 1 0.12 119.00 2.80 0.09 103.84 Duluth 22 98 22 103.9 3 100 3 </td <td>Duluth</td> <td>22</td> <td>98</td> <td>22</td> <td>103.9</td> <td>2</td> <td>100</td> <td>4</td> <td>0.12</td> <td>160.00</td> <td>2.64</td> <td>0.08</td> <td>72.82</td> <td>76.76</td>	Duluth	22	98	22	103.9	2	100	4	0.12	160.00	2.64	0.08	72.82	76.76
Duluth 22 98 22 103.9 2 100 mean3-5 0.15 146.00 2.01 0.00 15.17 15.55 Duluth 22 98 22 103.9 2 100 mean3-5 0.15 146.00 2.01 0.01 3.59 Duluth 22 98 22 103.9 2 100 stddev3-5 0.02 22.54 0.28 0.01 3.59 Duluth 22 98 22 103.9 2 100 coefvar3-5 15.44 15.44 11.17 11.17 4.76 Duluth 22 98 22 103.9 3 100 1 0.12 119.00 2.80 0.09 103.84 Duluth 22 98 22 103.9 3 100 2 0.09 89.00 2.19 0.07 108.59 Duluth 22 98 22 103.9 3 100 3 0.12 117.00 2.80 0.09 105.62 106.02 Duluth 22 <th< td=""><td>Duluth</td><td>22</td><td>98</td><td>22</td><td>103.9</td><td>2</td><td>100</td><td>5</td><td>0.16</td><td>158.00</td><td>2.64</td><td>0.08</td><td>73 74</td><td>75.33</td></th<>	Duluth	22	98	22	103.9	2	100	5	0.16	158.00	2.64	0.08	73 74	75.33
Duluth 22 98 22 103.9 2 100 stdev3-5 0.02 2.16 0.03 17.05 Duluth 22 98 22 103.9 2 100 stdev3-5 0.02 2.54 0.01 3.59 Duluth 22 98 22 103.9 2 100 stdev3-5 15.44 15.44 11.17 11.17 4.76 Duluth 22 98 22 103.9 3 100 1 0.12 119.00 2.80 0.09 103.84 Duluth 22 98 22 103.9 3 100 1 0.12 119.00 2.80 0.09 103.84 Duluth 22 98 22 103.9 3 100 2 0.09 89.00 2.19 0.07 108.59 Duluth 22 98 22 103.9 3 100 4 0.12 119.00 2.74 0.09 101.62 105.27 Duluth 22 98 22 103.9 3	Duluth	22	98	22	103.9	2	100	mean3-5	0.15	146.00	2.01	0.08	75.33	15.55
Duluth 22 98 22 103.9 2 100 coefvar3-5 15.44 11.17 11.17 4.76 Duluth 22 98 22 103.9 3 100 1 0.12 119.00 2.80 0.09 103.84 Duluth 22 98 22 103.9 3 100 1 0.12 119.00 2.80 0.09 103.84 Duluth 22 98 22 103.9 3 100 2 0.09 89.00 2.19 0.07 108.59 Duluth 22 98 22 103.9 3 100 3 0.12 117.00 2.80 0.09 105.62 106.02 Duluth 22 98 22 103.9 3 100 4 0.12 119.00 2.74 0.09 101.62 105.27 Duluth 22 98 22 103.9 3 100 5 0.12 119.00 2.77 0.09 102.73 103.32 Duluth 22 98	Duluth	22	98	22	103.9	2	100	stddev3-5	0.02	22.54	0.28	0.00	3 59	
Data 22 98 22 103.9 3 100 1 0.12 113.44 11.17 <t< td=""><td>Duluth</td><td>22</td><td>98</td><td>22</td><td>103.9</td><td>2</td><td>100</td><td>coefvar3-5</td><td>15 44</td><td>15 44</td><td>11.17</td><td>11.17</td><td>4.76</td><td></td></t<>	Duluth	22	98	22	103.9	2	100	coefvar3-5	15 44	15 44	11.17	11.17	4.76	
Duluth 22 98 22 103.9 3 100 2 0.09 103.07 108.59 Duluth 22 98 22 103.9 3 100 2 0.09 89.00 2.19 0.07 108.59 Duluth 22 98 22 103.9 3 100 3 0.12 117.00 2.80 0.09 105.62 106.02 Duluth 22 98 22 103.9 3 100 4 0.12 117.00 2.80 0.09 105.62 106.02 Duluth 22 98 22 103.9 3 100 4 0.12 119.00 2.74 0.09 101.62 105.27 Duluth 22 98 22 103.9 3 100 mean3-5 0.12 119.00 2.77 0.09 102.73 103.32 Duluth 22 98 22 103.9 3 100 mean3-5	Duluth	22	98	22	103.9	3	100	1	0.12	119.00	2.80	0.09	103.84	
Data 22 98 22 103.9 3 100 3 0.12 117.00 2.19 0.07 105.76 106.77 Data 22 98 22 103.9 3 100 3 0.12 117.00 2.80 0.09 105.62 106.02 Data 22 98 22 103.9 3 100 4 0.12 117.00 2.74 0.09 105.62 106.27 Data 22 98 22 103.9 3 100 4 0.12 119.00 2.74 0.09 105.62 106.27 Data 22 98 22 103.9 3 100 5 0.12 119.00 2.77 0.09 102.73 103.32 Data 22 98 22 103.9 3 100 mean3-5 0.12 118.33 2.77 0.09 103.32 Data 23 100 stdedv3-5 0.00 1.15 0.03 0.00 2.06 Data 24 98 22 <t< td=""><td>Duluth</td><td>22</td><td>98</td><td>22</td><td>103.9</td><td>3</td><td>100</td><td>2</td><td>0.09</td><td>89.00</td><td>2.00</td><td>0.07</td><td>108.59</td><td></td></t<>	Duluth	22	98	22	103.9	3	100	2	0.09	89.00	2.00	0.07	108.59	
Duluth 22 98 22 103.9 3 100 4 0.12 117.00 2.80 0.09 103.02 100.02 Duluth 22 98 22 103.9 3 100 4 0.12 117.00 2.80 0.09 103.02 100.02 Duluth 22 98 22 103.9 3 100 5 0.12 119.00 2.74 0.09 101.62 105.27 Duluth 22 98 22 103.9 3 100 mean3-5 0.12 119.00 2.77 0.09 102.73 103.32 Duluth 22 98 22 103.9 3 100 mean3-5 0.12 118.33 2.77 0.09 103.32 Duluth 22 98 22 103.9 3 100 stdev3-5 0.00 1.15 0.03 0.00 2.06 Duluth 22 98 22 103.9 3	Duluth	22	98	22	103.9	3	100	3	0.09	117.00	2.19	0.07	105.59	106.02
Duluth 22 98 22 103.9 3 100 5 0.12 117.00 2.74 0.09 101.02 103.27 Duluth 22 98 22 103.9 3 100 5 0.12 119.00 2.77 0.09 102.73 103.32 Duluth 22 98 22 103.9 3 100 mean3-5 0.12 118.33 2.77 0.09 103.32 Duluth 22 98 22 103.9 3 100 stdev3-5 0.00 1.15 0.00 2.06 Duluth 22 98 22 103.9 3 100 coefyar3-5 0.98 1.08 2.00	Duluth	22	98	22	103.9	3	100	4	0.12	119.00	2.00	0.09	101.62	105.02
Duluth 22 98 22 103.9 3 100 rs 0.12 117.00 2.17 0.09 102.73 103.32 Duluth 22 98 22 103.9 3 100 mean3-5 0.12 118.33 2.77 0.09 103.32 Duluth 22 98 22 103.9 3 100 stdlev3-5 0.00 1.15 0.30 0.00 2.06 Duluth 22 98 22 103.9 3 100 coefyar3-5 0.98 1.08 2.00	Duluth	22	98	22	103.9	3	100		0.12	119.00	2.74	0.09	101.02	103.27
Duluth 22 98 22 103.9 3 100 intening 0.12 110.33 2.17 0.07 105.32 Duluth 22 98 22 103.9 3 100 stddev3-5 0.00 1.15 0.03 0.00 2.06 Duluth 22 98 22 103.9 3 100 cptqrat_5 0.98 0.98 1.08 1.08 2.00	Duluth	22	08	22	103.9	3	100	mean3.5	0.12	119.00	2.17	0.09	102.75	105.52
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Duluth	22	98	22	103.9	3	100	stddev3.5	0.12	1 15	0.03	0.09	2.06	
	Duluth	22	98	22	103.9	3	100	coefvar3-5	0.00	0.98	1 08	1.08	2.00	

					Lig	ht Weight De	eflectometer						
Soil	Target	Target	Actual	Astual	Teat	Dron	Dron			Drm	amia		Three Blow
Origin	Moisture	Danaity	Moisture	Danaity	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Politi	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Duluth	22	98	22	103.9	1	500	1	0.30	302.00	5.14	0.16	75.11	
Duluth	22	98	22	103.9	1	500	2	0.30	300.00	5.14	0.16	75.61	
Duluth	22	98	22	103.9	1	500	3	0.31	309.00	5.02	0.16	71.70	74.14
Duluth	22	98	22	103.9	1	500	4	0.32	319.00	5.11	0.16	70.69	72.67
Duluth	22	98	22	103.9	1	500	5	0.31	307.00	5.08	0.16	73.03	71.81
Duluth	22	98	22	103.9	1	500	mean3-5	0.31	311.67	5.07	0.16	71.81	
Duluth	22	98	22	103.9	1	500	stddev3-5	0.01	6.43	0.05	0.00	1.17	
Duluth	22	98	22	103.9	1	500	coefvar3-5	2.06	2.06	0.90	0.90	1.63	
Duluth	22	98	22	103.9	2	500	1	0.46	463.00	5.67	0.18	54.05	
Duluth	22	98	22	103.9	2	500	2	0.47	472.00	5.78	0.18	54.04	
Duluth	22	98	22	103.9	2	500	3	0.47	474.00	5.65	0.18	52.60	53.56
Duluth	22	98	22	103.9	2	500	4	0.48	475.00	5.71	0.18	53.05	53.23
Duluth	22	98	22	103.9	2	500	5	0.48	476.00	5.69	0.18	52.75	52.80
Duluth	22	98	22	103.9	2	500	mean3-5	0.48	475.00	5.68	0.18	52.80	
Duluth	22	98	22	103.9	2	500	stddev3-5	0.00	1.00	0.03	0.00	0.23	
Duluth	22	98	22	103.9	2	500	coefvar3-5	0.21	0.21	0.54	0.54	0.43	
Duluth	22	98	22	103.9	3	500	1	0.33	332.00	5.58	0.18	74.17	
Duluth	22	98	22	103.9	3	500	2	0.35	349.00	5.56	0.18	70.31	
Duluth	22	98	22	103.9	3	500	3	0.35	346.00	5.58	0.18	71.17	71.88
Duluth	22	98	22	103.9	3	500	4	0.35	350.00	5 53	0.18	69.73	70.40
Duluth	22	98	22	103.9	3	500	5	0.34	344.00	5.55	0.18	71.33	70.74
Duluth	22	98	22	103.9	3	500	mean3-5	0.35	346.67	5.56	0.18	70.74	, 0., 1
Duluth	22	98	22	103.9	3	500	stddev3-5	0.00	3.06	0.03	0.00	0.88	
Duluth	22	98	22	103.9	3	500	coefvar3-5	0.88	0.88	0.05	0.45	1.25	
Duluth	22	98	22	103.9	1	900	1	0.74	743.00	7.97	0.25	47.34	
Duluth	22	98	22	103.9	1	900	2	0.78	782.00	8.15	0.26	45.99	
Duluth	22	98	22	103.9	1	900	3	0.81	814.00	8.12	0.26	44.02	45 79
Duluth	22	98	22	103.9	1	900	4	0.83	831.00	8.02	0.26	42.59	44 20
Duluth	22	98	22	103.9	1	900	5	0.84	840.00	8 14	0.26	42.77	43.13
Duluth	22	98	22	103.9	1	900	mean3-5	0.83	828.33	8.09	0.26	43.13	13.13
Duluth	22	98	22	103.9	1	900	stddev3-5	0.01	13.20	0.06	0.00	0.78	
Duluth	22	98	22	103.9	1	900	coefvar3-5	1 59	1 59	0.79	0.79	1.81	
Duluth	22	98	22	103.9	2	900	1	0.86	855.00	8.44	0.27	43.56	
Duluth	22	98	22	103.9	2	900	2	0.89	892.00	8.52	0.27	42.15	
Duluth	22	98	22	103.9	2	900	3	0.92	920.00	8.58	0.27	41.16	42.29
Duluth	22	98	22	103.9	2	900	4	0.94	937.00	8.58	0.27	40.41	41.24
Duluth	22	98	22	103.9	2	900	5	0.95	946.00	8.66	0.27	40.40	40.66
Duluth	22	98	22	103.9	2	900	mean3-5	0.93	934 33	8.61	0.20	40.66	10.00
Duluth	22	98	22	103.9	2	900	stddev3-5	0.01	13.20	0.05	0.00	0.43	
Duluth	22	98	22	103.9	2	900	coefvar3-5	1.41	1.41	0.05	0.54	1.07	
Duluth	22	98	22	103.9	3	900	1	0.70	698.00	8 48	0.27	53.62	
Duluth	22	98	22	103.9	3	900	2	0.75	754.00	8 54	0.27	49.99	
Duluth	22	98	22	103.9	3	900	3	0.75	749.00	8.66	0.27	51.03	51.54
Duluth	22	98	22	103.9	3	900	4	0.75	770.00	8.65	0.28	49.58	50.20
Duluth	22	98	22	103.9	3	900		0.78	779.00	8.58	0.20	49.50	49.74
Duluth	22	98	22	103.9	3	900	mean3-5	0.70	766.00	8.63	0.27	49.74	77.74
Duluth	22	98	22	103.9	3	900	stddev3-5	0.02	15 30	0.03	0.00	1 22	
Duluth	22	98	22	103.9	3	900	coefvar3-5	2.01	2.01	0.51	0.51	2.45	

Soil Organ Targe Content Actual Decisit Test Decisit Drop Number Drop Number Drop Number Drop Number Drop Number Drop Number Drop Number Drop Number						Lig	ht Weight De	eflectometer						
Motione Motione Normal (Content) Normal (Conten) Normal (Conten) Normal (Conten) Nor	Seil	Target	Torget	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
ContentContentContentContentRegulNumeProveFinalContentConten	Origin	Moisture	Density	Moisture	Density	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
biolbiolbiolbiolbiolbiolbiolbiolbiolbiolbiolbiolbiolbiolbiolDaluh169816.3102.3110020.79700.003.470.1119.38Daluh169816.3102.3110020.79700.003.470.11120.61Daluh169816.3102.3110040.7574.003.500.1120.9720.37Daluh169816.3102.3110050.7473.803.510.1120.9720.37Daluh169816.3102.31100meanl-50.7517.4773.520.1120.9720.78Daluh169816.3102.31100meanl-51.501.160.070.350.1120.9720.78Daluh169816.3102.3210011.600.070.360.011.2421.17Daluh169816.3102.3210040.65647003.600.1124.9721.17Daluh169816.3102.32100meanl-50.61641003.600.0124.8721.17Daluh169816.3102.32100meanl-50.61641003.600.0124	Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
Dolubn169816.310.31.11001.00.7970003.470.1119.38IDolubn169816.3102.31.110020.7970003.550.1120.6120.79Dolubn169816.3102.31.110040.75745.003.550.1120.7320.78Dolubn169816.3102.31.110040.75747.673.500.1120.7320.78Dolubn169816.3102.31.1100stdor3.50.1120.730.021.75Dolubn169816.3102.31.1100stdor3.50.1112.010.7577.6777.570.921.75Dolubn169816.3102.31.2100stdor3.50.1112.6310.7510.		[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Dolubri169816.310.231.110.002.0.79790.003.470.1119.3810.23Dadurb169816.310.231.110.003.50.01.120.7320.23Dolubri169816.310.231.110.005.0745.003.530.1120.7320.23Dolubri169816.310.231.110.0010.0747.673.520.1112.0730.001.1Dolubri169816.310.231.210.00studers1.500.7750.750.020.001.001.001.001.001.001.001.000.0	Duluth	16	98	16.3	102.3	1	100	1	0.79	790.00	3.47	0.11	19.38	
Datum169816.310.2311004.30.7670.003.530.1120.6117.79Datum169816.310.2311004.40.7574.003.510.1120.9120.78Datum169816.310.231100100.7577.807.520.1120.7520.757.520.1120.7520.757.520.1120.75 </td <td>Duluth</td> <td>16</td> <td>98</td> <td>16.3</td> <td>102.3</td> <td>1</td> <td>100</td> <td>2</td> <td>0.79</td> <td>790.00</td> <td>3.47</td> <td>0.11</td> <td>19.38</td> <td></td>	Duluth	16	98	16.3	102.3	1	100	2	0.79	790.00	3.47	0.11	19.38	
Datuler169816.310.23110040.75745.003.510.1120.7320.24Datuler169816.310.23110050.74735.003.510.1120.7820.78Datuler169816.310.231100stadev3.50.750.77737.673.520.11120.781.500.750.921.500.750.920.500.921.500.750.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.920.500.500.500.500.500.500.770.500.500.500.770.500.500.500.770.500.500.500.770.50<	Duluth	16	98	16.3	102.3	1	100	3	0.76	760.00	3.55	0.11	20.61	19.79
Dalah 16 98 16.3 102.3 1 100 es 0.75 747.67 3.51 0.11 20.99 20.78 Dalah 16 98 16.3 102.3 1 100 reade-5 0.75 747.67 3.52 0.11 20.97 Dalah 16 98 16.3 102.3 1 100 reade-5 1.05 0.175 0.77 0.75 0.75 0.77 0.75 0.77	Duluth	16	98	16.3	102.3	1	100	4	0.75	745.00	3.50	0.11	20.73	20.24
Daluh 16 98 16.3 102.3 1 100 mean-5 0.77 747.67 3.52 0.11 20.78 Daluh 16 98 16.3 102.3 1 100 score/ar.5 5.0 0.15 0.75 0.75 0.92 . Daluh 16 98 16.3 102.3 2 100 1 102 10.70 3.60 0.11 12.62 Daluh 16 98 16.3 102.3 2 100 3 0.64 64.400 3.60 0.11 24.67 21.31 Daluh 16 98 16.3 102.3 2 100 4 0.65 647.00 3.61 0.11 24.67 21.31 Daluh 16 98 16.3 102.3 2 100 score/ar-5 0.61 640.10 3.61 0.12 25.67 24.84 Daluh 16 98 16.3 102.3 3 <	Duluth	16	98	16.3	102.3	1	100	5	0.74	738.00	3.51	0.11	20.99	20.78
Datuh 16 98 16.3 102.3 1 100 esddev/s-5 0.01 11.24 0.03 0.00 0.19 Datuh 16 98 16.3 102.3 2 100 11.1 10.2 1017.00 3.60 0.11 15.62 Datuh 16 98 16.3 102.3 2 100 3 0.64 644.00 3.60 0.11 23.63 Datuh 16 98 16.3 102.3 2 100 4 0.65 64.4 644.00 3.60 0.11 24.67 21.33 Datuh 16 98 16.3 102.3 2 100 means 5 0.64 64.07 3.61 0.11 24.83 24.12 24.13 Datuh 16 98 16.3 102.3 3 100 means 5 0.61 60.13 102.3 23.00 10.11 24.45 Datuh 16 98 16.3 102.3 </td <td>Duluth</td> <td>16</td> <td>98</td> <td>16.3</td> <td>102.3</td> <td>1</td> <td>100</td> <td>mean3-5</td> <td>0.75</td> <td>747.67</td> <td>3.52</td> <td>0.11</td> <td>20.78</td> <td></td>	Duluth	16	98	16.3	102.3	1	100	mean3-5	0.75	747.67	3.52	0.11	20.78	
Daluh 16 98 16.3 102.3 1 100 corkar.5 1.50 1.50 0.75 0.75 0.72 0.72 Daluh 16 98 16.3 102.3 2 100 1 10.2 01700 3.50 0.11 123.63 Daluh 16 98 16.3 102.3 2 100 4 0.66 663.00 0.11 24.67 21.31 Daluh 16 98 16.3 102.3 2 100 4 0.65 647.00 3.55 0.11 24.57 21.31 Daluh 16 98 16.3 102.3 2 100 mem.5: 0.64 640.67 3.61 0.11 24.54 107 0.66 0.60 0.00 0.74 107 0.66 67.00 3.74 0.12 24.54 Daluh 16 98 16.3 102.3 3 100 2 0.68 67.500 3.33	Duluth	16	98	16.3	102.3	1	100	stddev3-5	0.01	11.24	0.03	0.00	0.19	
Daluh 16 98 16.3 102.3 2.2 100 1 1.02 107.00 3.60 0.11 15.62 Daluh 16 98 16.3 102.3 2.2 100 3 0.64 664.100 3.55 0.11 23.63 Daluh 16 98 16.3 102.3 2.2 100 3 0.64 664.100 3.55 0.11 24.27 24.17 Daluh 16 98 16.3 102.3 2.2 100 stant 5 0.64 640.67 3.61 0.11 24.85 Daluh 16 98 16.3 102.3 2.2 100 stadev.35 0.01 2.4.85 Daluh 16 98 16.3 102.3 3 100 1 1.07 1.67 1.67 2.99 1.014 Daluh 16 98 16.3 102.3 3 100 2 0.68 675 00 3.31 <	Duluth	16	98	16.3	102.3	1	100	coefvar3-5	1.50	1.50	0.75	0.75	0.92	
Daluh 16 98 16.3 102.3 2 100 2 0.66 663.00 3.55 0.11 23.63 Daluh 16 98 16.3 102.3 2 100 4 0.66 661.00 3.55 0.11 24.67 24.17 Daluh 16 98 16.3 102.3 2 100 mean3.5 0.64 641.00 3.55 0.11 24.85 Daluh 16 98 16.3 102.3 2 100 mean3.5 0.64 640.67 3.61 0.11 24.85 Daluh 16 98 16.3 102.3 2 100 mean3.5 0.64 640.67 3.61 0.11 24.85 Daluh 16 98 16.3 102.3 3 100 1 1.07 105.500 3.14 0.12 24.85 Daluh 16 98 16.3 102.3 3 100 mean5.5 0.61	Duluth	16	98	16.3	102.3	2	100	1	1.02	1017.00	3.60	0.11	15.62	
Datuh 16 98 16.3 102.3 2 100 3 0.64 644.00 3.60 0.11 24.67 21.13 Datuh 16 98 16.3 102.3 2 100 4 0.63 647.00 3.55 0.11 24.67 23.13 Datuh 16 98 16.3 102.3 2 100 5 0.64 641.00 3.67 0.12 25.67 24.85 Datuh 16 98 16.3 102.3 2 100 stdatd*35 0.01 8.50 0.06 0.00 0.74 Datuh 16 98 16.3 102.3 3 100 2 0.68 675.00 3.74 0.12 23.44 22.03 25.54 Datuh 16 98 16.3 102.3 3 100 5 0.53 3.52.00 23.4 22.63 23.55.4 Datuh 16 98 16.3 102.3 <	Duluth	16	98	16.3	102.3	2	100	2	0.66	663.00	3.55	0.11	23.63	
Databath 16 98 16.3 102.3 2 100 4 0.65 647.00 3.55 0.11 24.21 24.17 Databath 16 98 16.3 102.3 2 100 5 0.64 641.07 3.67 0.12 25.67 24.85 Databath 16 98 16.3 102.3 2 100 cockprat-5 1.33 1.67 1.67 2.99 - Databath 16 98 16.3 102.3 3 100 1 1.07 1065.00 3.81 0.12 24.84 22.03 Databath 16 98 16.3 102.3 3 100 4 0.64 642.00 3.83 0.12 25.84 22.03 Databath 16 98 16.3 102.3 3 100 5.3 35.20 2.93 0.09 24.63 25.60 Databath 16 98 16.3 102.3 1.	Duluth	16	98	16.3	102.3	2	100	3	0.64	644.00	3.60	0.11	24.67	21.31
Daulah 16 98 16.3 102.3 2 100 5 0.63 631.00 3.67 0.12 25.67 24.85 Daluth 16 98 16.3 102.3 2 100 state 6.64 640.67 3.61 0.11 24.85 Daluth 16 98 16.3 102.3 2 100 core 1.33 1.67 1.67 2.99 - Daluth 16 98 16.3 102.3 3 100 2 0.68 675.00 3.74 0.12 25.84 22.03 Daluth 16 98 16.3 102.3 3 100 4 0.64 642.00 3.83 0.12 25.84 22.03 Daluth 16 98 16.3 102.3 3 100 core 3.52.50 2.33 0.02 0.87 Daluth 16 98 16.3 102.3 1 100 stde 3	Duluth	16	98	16.3	102.3	2	100	4	0.65	647.00	3.55	0.11	24.21	24.17
Daluh 16 98 16.3 102.3 2 100 meah3/3 0.64 640.67 3.61 0.11 24.85 Daluh 16 98 16.3 102.3 2 100 stdex35 0.01 8.50 0.06 0.00 0.74 Daluh 16 98 16.3 102.3 3 100 1 107 1065.00 3.81 0.12 2.445 Daluh 16 98 16.3 102.3 3 100 3 0.65 649.00 3.80 0.12 25.84 22.03 Daluh 16 98 16.3 102.3 3 100 4 0.64 642.00 3.83 0.12 25.84 22.03 Daluh 16 98 16.3 102.3 3 100 meah3.5 0.61 665.33 3.52 0.11 2.560 Daluh 16 98 16.3 102.3 1 500 1 -	Duluth	16	98	16.3	102.3	2	100	5	0.63	631.00	3.67	0.12	25.67	24.85
Daubh 16 98 16.3 102.3 2 100 stdervar3.5 0.01 8.50 0.06 0.00 0.7.4 Daubh 16 98 16.3 102.3 2 100 codervar3.5 11.33 11.37 11.67 2.99 Daubh 16 98 16.3 102.3 3 100 2 0.68 675.00 3.74 0.12 24.45 Daubh 16 98 16.3 102.3 3 100 4 0.64 642.00 3.83 0.12 22.54 22.03 Daubh 16 98 16.3 102.3 3 100 mask 64.04 64.00 3.83 0.12 23.84 25.00 Daubh 16 98 16.3 102.3 3 100 meshod 11.51 11.51 14.52 14.52 3.42 Daubh 16 98 16.3 102.3 1 500 1	Duluth	16	98	16.3	102.3	2	100	mean3-5	0.64	640.67	3.61	0.11	24.85	
Databa 16 98 16.3 102.3 2 100 ccefrar3-5 1.33 1.33 1.67 1.67 2.99 Databa 16 98 16.3 102.3 3 100 1 1.07 1065.00 3.81 0.12 15.79 Databa 16 98 16.3 102.3 3 100 2 0.68 675.00 3.74 0.12 22.44 Databa 16 98 16.3 102.3 3 100 4 0.64 642.00 3.80 0.12 25.84 22.03 Databa 16 98 16.3 102.3 3 100 stdew3.5 0.07 69.66 0.51 0.02 0.87 Databa 16 98 16.3 102.3 1 100 stdew3.5 0.07 69.66 0.51 0.02 0.87 Databa 16 98 16.3 102.3 1 500 4 0.32 <	Duluth	16	98	16.3	102.3	2	100	stddev3-5	0.01	8.50	0.06	0.00	0.74	
Daulah 16 98 16.3 102.3 3 100 1 1.07 1065.00 3.81 0.12 15.79 Dalah 16 98 16.3 102.3 3 100 2 0.68 675.00 3.74 0.12 24.45 Dalah 16 98 16.3 102.3 3 100 4 0.64 642.00 3.83 0.12 25.54 Dalah 16 98 16.3 102.3 3 100 4 0.64 642.00 3.83 0.12 25.54 Dalah 16 98 16.3 102.3 3 100 stears.5 0.61 605.33 3.52 0.11 25.60 Dalah 16 98 16.3 102.3 1 500 1 11.51 14.52 14.52 3.42 1.51 Dalah 16 98 16.3 102.3 1 500 3 0.32 317.00 57.6 <td>Duluth</td> <td>16</td> <td>98</td> <td>16.3</td> <td>102.3</td> <td>2</td> <td>100</td> <td>coefvar3-5</td> <td>1.33</td> <td>1.33</td> <td>1.67</td> <td>1.67</td> <td>2.99</td> <td></td>	Duluth	16	98	16.3	102.3	2	100	coefvar3-5	1.33	1.33	1.67	1.67	2.99	
Duluth 16 98 16.3 102.3 3 100 2 0.68 675.00 3.74 0.12 24.45 Duluth 16 98 16.3 102.3 3 100 4 0.65 649.00 3.80 0.12 25.84 22.03 Duluth 16 98 16.3 102.3 3 100 5 0.53 52.50 2.93 0.09 24.63 25.60 Duluth 16 98 16.3 102.3 3 100 stddev3.5 0.07 69.66 0.51 0.02 0.87 Duluth 16 98 16.3 102.3 1 500 2 0.29 291.00 5.71 0.18 86.60 Duluth 16 98 16.3 102.3 1 500 2 0.29 291.00 5.71 0.18 86.60 Duluth 16 98 16.3 102.3 1 500 4 0.35	Duluth	16	98	16.3	102.3	3	100	1	1.07	1065.00	3.81	0.12	15.79	
Duluth 16 98 16.3 102.3 3 100 3 0.65 649.00 3.80 0.12 25.84 22.03 Duluth 16 98 16.3 102.3 3 100 4 0.64 642.00 3.83 0.12 25.84 22.03 Duluth 16 98 16.3 102.3 3 100 xdev/s1 25.00 293 0.09 24.63 25.64 Duluth 16 98 16.3 102.3 3 100 reman-3-5 0.61 605.13 0.32 0.01 293 0.02 0.87 Duluth 16 98 16.3 102.3 1 500 2 0.29 291.00 571 0.18 86.60 Duluth 16 98 16.3 102.3 1 500 4 0.33 349.00 591 0.18 73.47 80.08 Duluth 16 98 16.3 102.3	Duluth	16	98	16.3	102.3	3	100	2	0.68	675.00	3.74	0.12	24.45	
Duluth 16 98 16.3 102.3 3 100 4 0.64 642.00 3.83 0.12 20.33 25.54 Duluth 16 98 16.3 102.3 3 100 read 55 52.00 2.93 0.09 24.63 25.60 Duluth 16 98 16.3 102.3 3 100 read 55 0.01 60.53 35.2 0.11 25.60 Duluth 16 98 16.3 102.3 3 100 read 11.51 11.52 14.52 3.42 Duluth 16 98 16.3 102.3 1 500 2 0.29 291.00 5.71 0.18 86.60 Duluth 16 98 16.3 102.3 1 500 4 0.35 349.00 5.81 0.18 80.19 Duluth 16 98 16.3 102.3 1 500 mas.	Duluth	16	98	16.3	102.3	3	100	3	0.65	649.00	3.80	0.12	25.84	22.03
Duluth 16 98 16.3 102.3 3 100 5 0.53 525.00 2.93 0.09 24.63 25.60 Duluth 16 98 16.3 102.3 3 100 stdew3-5 0.61 605.33 3.52 0.11 25.60 Duluth 16 98 16.3 102.3 3 100 context 0.61 605.31 0.02 0.087 Duluth 16 98 16.3 102.3 1 500 2 0.29 91.00 5.71 0.18 86.60 Duluth 16 98 16.3 102.3 1 500 2 0.29 91.00 5.71 0.18 80.60 91.00 Duluth 16 98 16.3 102.3 1 500 4 0.35 349.00 5.81 0.18 73.47 80.08 Duluth 16 98 16.3 102.3 1 500 stol	Duluth	16	98	16.3	102.3	3	100	4	0.64	642.00	3.83	0.12	26.33	25.54
Duluth 16 98 16.3 102.3 3 100 mean3-5 0.61 605.33 3.22 0.11 25.60 20.00 Duluth 16 98 16.3 102.3 3 100 mean3-5 0.61 605.33 3.22 0.11 25.60 20.00 Duluth 16 98 16.3 102.3 1 500 1	Duluth	16	98	16.3	102.3	3	100	5	0.53	525.00	2.93	0.09	24.63	25.60
Datath 16 98 16.3 102.3 3 100 stidlev3.5 0.07 69.66 0.51 0.02 0.87 Dututh 16 98 16.3 102.3 3 100 stidlev3.5 11.51 11.51 14.52 14.52 3.42 Dututh 16 98 16.3 102.3 1 500 2 0.29 291.00 5.71 0.18 86.60 Dututh 16 98 16.3 102.3 1 500 3 0.32 317.00 5.76 0.18 80.19 Dututh 16 98 16.3 102.3 1 500 4 0.35 349.00 5.81 0.18 78.47 80.08 Dututh 16 98 16.3 102.3 1 500 stidev3.5 0.0.21 7.21 0.08 0.03 3.11 Dututh 16 98 16.3 102.3 2 500 3	Duluth	16	98	16.3	102.3	3	100	mean3-5	0.61	605.33	3.52	0.11	25.60	20.00
Duluth 16 98 16.3 102.3 3 100 coefwar3-5 11.51 11.51 14.52 14.52 3.42 Duluth 16 98 16.3 102.3 1 500 1	Duluth	16	98	16.3	102.3	3	100	stddev3-5	0.07	69.66	0.51	0.02	0.87	
Duluth 16 98 16.3 102.3 1 500 100 </td <td>Duluth</td> <td>16</td> <td>98</td> <td>16.3</td> <td>102.3</td> <td>3</td> <td>100</td> <td>coefvar3-5</td> <td>11.51</td> <td>11.51</td> <td>14.52</td> <td>14.52</td> <td>3.42</td> <td></td>	Duluth	16	98	16.3	102.3	3	100	coefvar3-5	11.51	11.51	14.52	14.52	3.42	
Dalath 16 98 16.3 102.3 1 500 2 0.29 291.00 5.71 0.18 86.60 Duluth 16 98 16.3 102.3 1 500 3 0.32 317.00 5.76 0.18 80.19 Duluth 16 98 16.3 102.3 1 500 4 0.35 349.00 5.81 0.18 73.47 80.08 Duluth 16 98 16.3 102.3 1 500 mean3-5 0.34 336.67 5.83 0.19 75.49 Duluth 16 98 16.3 102.3 1 500 stddev3-5 0.02 17.21 0.08 0.00 3.41 Duluth 16 98 16.3 102.3 2 500 2 0.33 381.00 5.84 0.19 75.35 Duluth 16 98 16.3 102.3 2 500 3 <th< td=""><td>Duluth</td><td>16</td><td>98</td><td>16.3</td><td>102.3</td><td>1</td><td>500</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Duluth	16	98	16.3	102.3	1	500	1						
Duluth 16 98 16.3 102.3 1 500 3 0.32 217.00 57.6 0.18 80.09 Duluth 16 98 16.3 102.3 1 500 4 0.35 349.00 5.81 0.18 80.09 Duluth 16 98 16.3 102.3 1 500 5 0.34 344.00 5.91 0.19 75.82 76.49 Duluth 16 98 16.3 102.3 1 500 stddev3-5 0.02 17.21 0.08 0.00 3.41 Duluth 16 98 16.3 102.3 2 500 coferar3-5 5.11 5.11 1.31 1.31 4.46 Duluth 16 98 16.3 102.3 2 500 2 0.35 349.00 5.99 0.19 75.75 Duluth 16 98 16.3 102.3 2 500 <	Duluth	16	98	16.3	102.3	1	500	2	0.29	291.00	5 71	0.18	86.60	
Duluth 16 98 16.3 102.3 1 500 4 0.35 349.00 5.81 0.18 73.17 80.08 Duluth 16 98 16.3 102.3 1 500 5 0.34 344.00 5.91 0.19 75.82 76.49 Duluth 16 98 16.3 102.3 1 500 state 0.34 336.67 5.83 0.19 75.82 76.49 Duluth 16 98 16.3 102.3 1 500 stdlev3-5 0.02 17.21 0.08 0.00 3.41 Duluth 16 98 16.3 102.3 2 500 1 0.38 381.00 5.84 0.19 67.65 Duluth 16 98 16.3 102.3 2 500 3 0.36 360.00 5.98 0.19 73.1 72.23 Duluth 16 98 16.3 102.3 2	Duluth	16	98	16.3	102.3	1	500	3	0.32	317.00	5.76	0.18	80.19	
Duluth 16 98 16.3 102.3 1 500 5 0.34 344.00 5.91 0.19 75.82 76.49 Duluth 16 98 16.3 102.3 1 500 rean3-5 0.34 336.67 5.83 0.19 76.49 Duluth 16 98 16.3 102.3 1 500 stddev3-5 0.02 17.21 0.08 0.00 3.41 Duluth 16 98 16.3 102.3 1 500 stddev3-5 0.02 17.21 0.08 0.00 3.41 Duluth 16 98 16.3 102.3 2 500 1 0.38 381.00 5.84 0.19 75.75 Duluth 16 98 16.3 102.3 2 500 3 0.36 360.00 5.98 0.19 75.14 74.73 Duluth 16 98 16.3 102.3 2 500 stddev3-5<	Duluth	16	98	16.3	102.3	1	500	4	0.35	349.00	5.81	0.18	73.47	80.08
Duluth 16 98 16.3 102.3 1 500 mean3-5 0.34 336.67 5.83 0.19 76.49 Duluth 16 98 16.3 102.3 1 500 stidev3-5 0.02 17.21 0.08 0.00 3.41 Duluth 16 98 16.3 102.3 1 500 coefvar3-5 5.11 5.11 1.31 1.31 4.46 Duluth 16 98 16.3 102.3 2 500 1 0.38 381.00 5.84 0.19 67.65 Duluth 16 98 16.3 102.3 2 500 2 0.35 349.00 5.99 0.19 75.75 Duluth 16 98 16.3 102.3 2 500 3 0.32 353.00 6.01 0.19 75.14 74.73 Duluth 16 98 16.3 102.3 2 500 stddev3.5 0.32 </td <td>Duluth</td> <td>16</td> <td>98</td> <td>16.3</td> <td>102.3</td> <td>1</td> <td>500</td> <td>5</td> <td>0.34</td> <td>344.00</td> <td>5.91</td> <td>0.19</td> <td>75.82</td> <td>76.49</td>	Duluth	16	98	16.3	102.3	1	500	5	0.34	344.00	5.91	0.19	75.82	76.49
Duluth 16 98 16.3 102.3 1 500 stidev3-5 0.02 17.21 0.08 0.00 3.41 Duluth 16 98 16.3 102.3 1 500 stidev3-5 0.02 17.21 0.08 0.00 3.41 Duluth 16 98 16.3 102.3 2 500 1 0.38 381.00 5.84 0.19 67.65 Duluth 16 98 16.3 102.3 2 500 2 0.35 349.00 5.99 0.19 75.75 Duluth 16 98 16.3 102.3 2 500 3 0.36 360.00 5.98 0.19 73.31 72.23 Duluth 16 98 16.3 102.3 2 500 5 0.32 320.00 5.98 0.19 73.31 72.23 Duluth 16 98 16.3 102.3 2 500 mean3-5	Duluth	16	98	16.3	102.3	1	500	mean3-5	0.34	336.67	5.83	0.19	76.49	/0.1/
Duluth 16 98 16.3 102.3 1 500 coeFar3-5 5.11 5.11 1.31 1.31 4.46 Duluth 16 98 16.3 102.3 2 500 1 0.38 381.00 5.84 0.19 67.65 Duluth 16 98 16.3 102.3 2 500 2 0.35 349.00 5.99 0.19 75.75 Duluth 16 98 16.3 102.3 2 500 3 0.36 360.00 5.98 0.19 75.75 Duluth 16 98 16.3 102.3 2 500 4 0.35 353.00 6.01 0.19 75.14 74.73 Duluth 16 98 16.3 102.3 2 500 5 0.32 320.00 5.98 0.19 75.77 Duluth 16 98 16.3 102.3 2 500 stdev3-5 0.02 <t< td=""><td>Duluth</td><td>16</td><td>98</td><td>16.3</td><td>102.3</td><td>1</td><td>500</td><td>stddev3-5</td><td>0.02</td><td>17.21</td><td>0.08</td><td>0.00</td><td>3.41</td><td></td></t<>	Duluth	16	98	16.3	102.3	1	500	stddev3-5	0.02	17.21	0.08	0.00	3.41	
Duluth 16 98 16.3 102.3 2 500 1 0.11 1111 1111 1111 111	Duluth	16	98	16.3	102.3	1	500	coefvar3-5	5.11	5 11	1 31	1 31	4 46	
Duluth 16 98 16.3 102.3 2 500 2 0.13 349.00 5.99 0.19 75.75 Duluth 16 98 16.3 102.3 2 500 3 0.36 360.00 5.99 0.19 75.75 Duluth 16 98 16.3 102.3 2 500 4 0.35 353.00 6.01 0.19 75.14 74.73 Duluth 16 98 16.3 102.3 2 500 5 0.32 320.00 5.98 0.19 75.14 74.73 Duluth 16 98 16.3 102.3 2 500 5 0.32 320.00 5.98 0.19 75.74 76.97 Duluth 16 98 16.3 102.3 2 500 stdeev3-5 0.02 21.36 0.02 0.00 4.85 Duluth 16 98 16.3 102.3 3 500 <th< td=""><td>Duluth</td><td>16</td><td>98</td><td>16.3</td><td>102.3</td><td>2</td><td>500</td><td>1</td><td>0.38</td><td>381.00</td><td>5.84</td><td>0.19</td><td>67.65</td><td></td></th<>	Duluth	16	98	16.3	102.3	2	500	1	0.38	381.00	5.84	0.19	67.65	
Duluth 16 98 16.3 102.3 2 500 3 0.36 500 5.00 5.00 73.31 72.23 Duluth 16 98 16.3 102.3 2 500 4 0.35 353.00 6.01 0.19 73.31 72.23 Duluth 16 98 16.3 102.3 2 500 5 0.32 353.00 6.01 0.19 73.31 72.23 Duluth 16 98 16.3 102.3 2 500 5 0.32 320.00 5.98 0.19 73.31 72.23 Duluth 16 98 16.3 102.3 2 500 mean3-5 0.34 344.33 5.99 0.19 73.31 72.23 Duluth 16 98 16.3 102.3 2 500 mean3-5 0.34 344.33 5.99 0.19 73.31 72.23 Duluth 16 98 16.3	Duluth	16	98	16.3	102.3	2	500	2	0.35	349.00	5.99	0.19	75 75	
Duluth 16 90 16.3 102.3 2 500 4 0.35 553.00 6.01 0.19 75.14 74.73 Duluth 16 98 16.3 102.3 2 500 4 0.35 353.00 6.01 0.19 75.14 74.73 Duluth 16 98 16.3 102.3 2 500 5 0.32 320.00 5.98 0.19 82.47 76.97 Duluth 16 98 16.3 102.3 2 500 stdlev3-5 0.02 21.36 0.02 0.00 4.85 Duluth 16 98 16.3 102.3 2 500 stdlev3-5 0.02 21.36 0.02 0.00 4.85 Duluth 16 98 16.3 102.3 3 500 1 0.39 393.00 6.13 0.20 68.84 Duluth 16 98 16.3 102.3 3 500	Duluth	16	98	16.3	102.3	2	500	3	0.36	360.00	5.98	0.19	73.31	72.23
Duluth 16 98 16.3 102.3 2 500 5 0.32 320.00 5.98 0.19 111 1	Duluth	16	98	16.3	102.3	2	500	4	0.35	353.00	6.01	0.19	75.14	74.73
Duluth 16 98 16.3 102.3 2 500 mean3-5 0.32 326.00 0.39 0.19 76.97 Duluth 16 98 16.3 102.3 2 500 mean3-5 0.34 344.33 5.99 0.19 76.97 Duluth 16 98 16.3 102.3 2 500 stdlev3-5 0.02 21.36 0.02 0.00 4.85 Duluth 16 98 16.3 102.3 2 500 coefvar3-5 6.20 6.20 0.29 0.29 6.30 Duluth 16 98 16.3 102.3 3 500 2 0.49 490.00 6.13 0.20 68.84 Duluth 16 98 16.3 102.3 3 500 2 0.49 490.00 6.25 0.20 56.29 Duluth 16 98 16.3 102.3 3 500 4 0.47 474.00 <td>Duluth</td> <td>16</td> <td>98</td> <td>16.3</td> <td>102.3</td> <td>2</td> <td>500</td> <td>5</td> <td>0.32</td> <td>320.00</td> <td>5.98</td> <td>0.19</td> <td>82.47</td> <td>76.97</td>	Duluth	16	98	16.3	102.3	2	500	5	0.32	320.00	5.98	0.19	82.47	76.97
Duluth 16 98 16.3 102.3 2 500 index 5 0.02 21.36 0.02 0.00 4.85 Duluth 16 98 16.3 102.3 2 500 coefvar3-5 6.20 6.20 0.29 0.29 6.30 Duluth 16 98 16.3 102.3 2 500 coefvar3-5 6.20 6.20 0.29 0.29 6.30 Duluth 16 98 16.3 102.3 3 500 1 0.39 393.00 6.13 0.20 68.84 Duluth 16 98 16.3 102.3 3 500 2 0.49 490.00 6.25 0.20 56.29 Duluth 16 98 16.3 102.3 3 500 3 0.31 313.00 6.13 0.20 86.43 70.52 Duluth 16 98 16.3 102.3 3 500 5 0.33 325.00 6.20 0.20 84.43 70.52 Duluth 16 <td< td=""><td>Duluth</td><td>16</td><td>98</td><td>16.3</td><td>102.3</td><td>2</td><td>500</td><td>mean3-5</td><td>0.34</td><td>344 33</td><td>5.99</td><td>0.19</td><td>76.97</td><td>10.91</td></td<>	Duluth	16	98	16.3	102.3	2	500	mean3-5	0.34	344 33	5.99	0.19	76.97	10.91
Duluth 16 98 16.3 102.3 2 500 coefvar3-5 6.20 6.10 0.02 0.00 100	Duluth	16	98	16.3	102.3	2	500	stddev3-5	0.02	21.36	0.02	0.00	4 85	
Duluth 16 98 16.3 102.3 3 500 1 0.39 393.00 6.13 0.20 68.84 Duluth 16 98 16.3 102.3 3 500 2 0.49 490.00 6.25 0.20 56.29 Duluth 16 98 16.3 102.3 3 500 2 0.49 490.00 6.25 0.20 56.29 Duluth 16 98 16.3 102.3 3 500 3 0.31 313.00 6.13 0.20 88.84 Duluth 16 98 16.3 102.3 3 500 4 0.47 474.00 6.18 0.20 57.54 66.75 Duluth 16 98 16.3 102.3 3 500 5 0.33 325.00 6.20 0.20 84.19 76.05 Duluth 16 98 16.3 102.3 3 500 mean-5 0.37	Duluth	16	98	16.3	102.3	2	500	coefvar3-5	6.20	6.20	0.02	0.00	6.30	
Daluth 16 98 16.3 102.3 3 500 1 0.37 573.00 6.13 0.20 60.04 Duluth 16 98 16.3 102.3 3 500 2 0.49 490.00 6.13 0.20 56.29 Duluth 16 98 16.3 102.3 3 500 4 0.47 474.00 6.13 0.20 56.29 Duluth 16 98 16.3 102.3 3 500 4 0.47 474.00 6.18 0.20 57.54 66.75 Duluth 16 98 16.3 102.3 3 500 5 0.33 325.00 6.20 0.20 84.19 76.05 Duluth 16 98 16.3 102.3 3 500 mean3-5 0.37 370.67 6.17 0.20 76.05 Duluth 16 98 16.3 102.3 3 500 stdedv3-5	Duluth	16	98	16.3	102.3	3	500	1	0.20	393.00	6.13	0.20	68.84	
Duluth 16 98 16.3 102.3 3 500 4 0.47 474.00 6.12 0.20 86.43 70.52 Duluth 16 98 16.3 102.3 3 500 4 0.47 474.00 6.18 0.20 86.43 70.52 Duluth 16 98 16.3 102.3 3 500 5 0.31 313.00 6.18 0.20 86.43 70.52 Duluth 16 98 16.3 102.3 3 500 5 0.33 325.00 6.20 0.20 86.43 70.52 Duluth 16 98 16.3 102.3 3 500 5 0.33 325.00 6.20 0.20 84.19 76.05 Duluth 16 98 16.3 102.3 3 500 stdedsv5 0.37 370.67 6.17 0.20 76.05 Duluth 16 98 16.3 102.3	Duluth	16	98	16.3	102.3	3	500	2	0.39	490.00	6.25	0.20	56.29	
Duluth 16 98 16.3 102.3 3 500 4 0.47 474.00 6.18 0.20 57.54 66.75 Duluth 16 98 16.3 102.3 3 500 5 0.31 51.00 6.19 60.49 60.49 60.47 Duluth 16 98 16.3 102.3 3 500 5 0.33 325.00 6.20 57.54 66.75 Duluth 16 98 16.3 102.3 3 500 mean3-5 0.37 370.67 6.17 0.20 84.19 76.05 Duluth 16 98 16.3 102.3 3 500 stdev3-5 0.09 89.69 0.04 0.00 16.07 Duluth 16 98 16.3 102.3 3 500 coefwar3-5 24.20 0.58 0.58 2113	Duluth	16	98	16.3	102.3	3	500	3	0.31	313.00	6.13	0.20	86.43	70.52
Duluth 16 98 16.3 102.3 3 500 4 0.47 474.00 0.18 0.20 57.34 00.75 Duluth 16 98 16.3 102.3 3 500 5 0.33 325.00 6.20 0.20 84.19 76.05 Duluth 16 98 16.3 102.3 3 500 stdlev3-5 0.37 370.67 6.17 0.20 76.05 Duluth 16 98 16.3 102.3 3 500 stdlev3-5 0.37 370.67 6.17 0.20 76.05 Duluth 16 98 16.3 102.3 3 500 stdlev3-5 0.37 370.67 6.17 0.20 76.05 Duluth 16 98 16.3 102.3 3 500 stdlev3-5 0.37 370.67 6.17 0.00 16.07	Duluth	16	98	16.3	102.5	3	500	4	0.31	474.00	6.18	0.20	57.54	66.75
Duluth 16 98 16.3 102.3 3 500 5 6.53 52.00 6.20 64.19 76.03 Duluth 16 98 16.3 102.3 3 500 mean3-5 0.37 370.67 6.17 0.20 76.05 Duluth 16 98 16.3 102.3 3 500 stddev3-5 0.09 89.69 0.04 0.00 16.07 Duluth 16 98 16.3 102.3 3 500 coefwar3-5 24.20 0.58 0.58 2113	Duluth	16	98	16.3	102.5	3	500	-+	0.33	325.00	6.20	0.20	84 19	76.05
Duluth 16 98 16.3 102.3 3 500 intent-5 0.57 370.07 0.17 0.20 70.03 Duluth 16 98 16.3 102.3 3 500 stdev3-5 0.09 89.69 0.00 16.07 Duluth 16 98 16.3 102.3 3 500 coefurt-5 24.20 0.58 0.58 21.13	Duluth	16	08	16.3	102.5	3	500	mean3.5	0.33	370.67	6.17	0.20	76.05	70.05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Duluth	16	98	16.3	102.5	3	500	stddev3.5	0.09	89.69	0.17	0.20	16.07	
	Duluth	16	98	16.3	102.5	3	500	coefvar3-5	24.20	24.20	0.58	0.58	21.13	

					Lig	ht Weight De	flectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Drop			Dvr	amic		Three Blow
Origin	Moisture	Donsity	Moisture	Donsity	Point	Height	Number	Defle	ection	Dyn	lanne	Modulus	Average
Oligin	Content	Density	Content	Density	1 Onit	Trengin	Ivuilioei			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Duluth	16	98	16.3	102.3	1	900	1	0.40	398.00	8.08	0.26	89.59	
Duluth	16	98	16.3	102.3	1	900	2	0.33	334.00	8.18	0.26	108.08	
Duluth	16	98	16.3	102.3	1	900	3	0.36	359.00	8.22	0.26	101.05	99.58
Duluth	16	98	16.3	102.3	1	900	4	0.37	373.00	8.27	0.26	97.85	102.33
Duluth	16	98	16.3	102.3	1	900	5	0.36	362.00	8.24	0.26	100.46	99.78
Duluth	16	98	16.3	102.3	1	900	mean3-5	0.36	364.67	8.24	0.26	99.78	
Duluth	16	98	16.3	102.3	1	900	stddev3-5	0.01	7.37	0.03	0.00	1.70	
Duluth	16	98	16.3	102.3	1	900	coefvar3-5	2.02	2.02	0.31	0.31	1.71	
Duluth	16	98	16.3	102.3	2	900	1	0.34	344.00	8.67	0.28	111.23	
Duluth	16	98	16.3	102.3	2	900	2	0.36	357.00	8.66	0.28	107.05	
Duluth	16	98	16.3	102.3	2	900	3	0.35	353.00	8.75	0.28	109.39	109.23
Duluth	16	98	16.3	102.3	2	900	4	0.39	385.00	8.73	0.28	100.07	105.51
Duluth	16	98	16.3	102.3	2	900	5	0.40	400.00	8.82	0.28	97.31	102.26
Duluth	16	98	16.3	102.3	2	900	mean3-5	0.38	379.33	8.77	0.28	102.26	
Duluth	16	98	16.3	102.3	2	900	stddev3-5	0.02	24.01	0.05	0.00	6.33	
Duluth	16	98	16.3	102.3	2	900	coefvar3-5	6.33	6.33	0.54	0.54	6.19	
Duluth	16	98	16.3	102.3	3	900	1	0.34	342.00	8.82	0.28	113.81	
Duluth	16	98	16.3	102.3	3	900	2	0.36	364.00	8.91	0.28	108.03	
Duluth	16	98	16.3	102.3	3	900	3	0.34	339.00	8.93	0.28	116.25	112.70
Duluth	16	98	16.3	102.3	3	900	4	0.31	313.00	8.99	0.29	126.76	117.01
Duluth	16	98	16.3	102.3	3	900	5	0.36	360.00	9.01	0.29	110.45	117.82
Duluth	16	98	16.3	102.3	3	900	mean3-5	0.34	337.33	8.98	0.29	117.82	
Duluth	16	98	16.3	102.3	3	900	stddev3-5	0.02	23.54	0.04	0.00	8.26	
Duluth	16	98	16.3	102.3	3	900	coefvar3-5	6.98	6.98	0.46	0.46	7.01	
Duluth	24	103	23.6	97.3	1	100	1						
Duluth	24	103	23.6	97.3	1	100	2						
Duluth	24	103	23.6	97.3	1	100	3						
Duluth	24	103	23.6	97.3	1	100	4						
Duluth	24	103	23.6	97.3	1	100	5						
Duluth	24	103	23.6	97.3	1	100	mean3-5						
Duluth	24	103	23.6	97.3	1	100	stddev3-5						
Duluth	24	103	23.6	97.3	1	100	coefvar3-5						
Duluth	24	103	23.6	97.3	2	100	1						
Duluth	24	103	23.6	97.3	2	100	2						
Duluth	24	103	23.6	97.3	2	100	3						
Duluth	24	103	23.6	97.3	2	100	4						
Duluth	24	103	23.6	97.3	2	100	5						
Duluth	24	103	23.6	97.3	2	100	mean3-5						
Duluth	24	103	23.6	97.3	2	100	stddev3-5						
Duluth	24	103	23.6	97.3	2	100	coefvar3-5						

					Lig	ht Weight De	eflectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Dum	omio		Three Blow
Origin	Moisture	Density	Moisture	Danaity	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Politi	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Duluth	19.5	103	19.2	99.8	1	100	1	0.09	85.00	3.58	0.11	185.87	
Duluth	19.5	103	19.2	99.8	1	100	2	0.08	78.00	3.87	0.12	218.96	
Duluth	19.5	103	19.2	99.8	1	100	3	0.08	77.00	3.87	0.12	221.81	208.88
Duluth	19.5	103	19.2	99.8	1	100	4	0.08	76.00	3.89	0.12	225.89	222.22
Duluth	19.5	103	19.2	99.8	1	100	5	0.08	77.00	3.88	0.12	222.38	223.36
Duluth	19.5	103	19.2	99.8	1	100	mean3-5	0.08	76.67	3.88	0.12	223.36	
Duluth	19.5	103	19.2	99.8	1	100	stddev3-5	0.00	0.58	0.01	0.00	2.21	
Duluth	19.5	103	19.2	99.8	1	100	coefvar3-5	0.75	0.75	0.26	0.26	0.99	
Duluth	19.5	103	19.2	99.8	2	100	1	0.09	93.00	4.01	0.13	190.29	
Duluth	19.5	103	19.2	99.8	2	100	2	0.10	96.00	4.11	0.13	188.94	
Duluth	19.5	103	19.2	99.8	2	100	3	0.09	93.00	4.03	0.13	191.24	190.16
Duluth	19.5	103	19.2	99.8	2	100	4	0.09	93.00	4.00	0.13	189.82	190.00
Duluth	19.5	103	19.2	99.8	2	100	5	0.09	93.00	4.08	0.13	193.61	191.56
Duluth	19.5	103	19.2	99.8	2	100	mean3-5	0.09	93.00	4.04	0.13	191.56	
Duluth	19.5	103	19.2	99.8	2	100	stddev3-5	0.00	0.00	0.04	0.00	1.92	
Duluth	19.5	103	19.2	99.8	2	100	coefvar3-5	0.00	0.00	1.00	1.00	1.00	
Duluth	19.5	103	19.2	99.8	3	100	1	0.08	78.00	3.70	0.12	209.34	
Duluth	19.5	103	19.2	99.8	3	100	2	0.08	77.00	3.69	0.12	211.49	
Duluth	19.5	103	19.2	99.8	3	100	3	0.08	77.00	3.66	0.12	209.77	210.20
Duluth	19.5	103	19.2	99.8	3	100	4	0.08	78.00	3.69	0.12	208.78	210.01
Duluth	19.5	103	19.2	99.8	3	100	5	0.08	79.00	3.68	0.12	205.58	208.04
Duluth	19.5	103	19.2	99.8	3	100	mean3-5	0.08	78.00	3.68	0.12	208.04	
Duluth	19.5	103	19.2	99.8	3	100	stddev3-5	0.00	1.00	0.02	0.00	2.19	
Duluth	19.5	103	19.2	99.8	3	100	coefvar3-5	1.28	1.28	0.42	0.42	1.05	
Duluth	19.5	103	19.2	99.8	1	500	1	0.13	130.00	5.96	0.19	202.33	
Duluth	19.5	103	19.2	99.8	1	500	2	0.13	133.00	5.99	0.19	198.76	
Duluth	19.5	103	19.2	99.8	1	500	3	0.13	130.00	5.94	0.19	201.65	200.91
Duluth	19.5	103	19.2	99.8	1	500	4	0.13	129.00	5.89	0.19	201.50	200.64
Duluth	19.5	103	19.2	99.8	1	500	5	0.14	135.00	6.03	0.19	197.12	200.09
Duluth	19.5	103	19.2	99.8	1	500	mean3-5	0.13	131.33	5.95	0.19	200.09	
Duluth	19.5	103	19.2	99.8	1	500	stddev3-5	0.00	3.21	0.07	0.00	2.57	
Duluth	19.5	103	19.2	99.8	1	500	coefvar3-5	2.45	2.45	1.19	1.19	1.29	
Duluth	19.5	103	19.2	99.8	2	500	1	0.15	154.00	6.06	0.19	173.66	
Duluth	19.5	103	19.2	99.8	2	500	2	0.15	151.00	6.02	0.19	175.94	
Duluth	19.5	103	19.2	99.8	2	500	3	0.15	152.00	6.10	0.19	177.11	175 57
Duluth	19.5	103	19.2	99.8	2	500	4	0.16	156.00	6.08	0.19	172.00	175.02
Duluth	19.5	103	19.2	99.8	2	500	5	0.15	151.00	6.08	0.19	172.00	175.60
Duluth	19.5	103	19.2	99.8	2	500	mean3-5	0.15	153.00	6.09	0.19	175.60	170.00
Duluth	19.5	103	19.2	99.8	2	500	stddev3-5	0.00	2.65	0.01	0.00	3.13	
Duluth	19.5	103	19.2	99.8	2	500	coefvar3-5	1.73	1.73	0.19	0.19	1.78	
Duluth	19.5	103	19.2	99.8	3	500	1	0.15	151.00	6.07	0.19	177.41	
Duluth	19.5	103	19.2	99.8	3	500	2	0.15	148.00	6.06	0.19	180.70	
Duluth	19.5	103	19.2	99.8	3	500	3	0.15	150.00	5.99	0.19	176.23	178 11
Duluth	19.5	103	19.2	99.8	3	500	4	0.15	151.00	6.03	0.19	176.24	177.72
Duluth	19.5	103	19.2	99.8	3	500	5	0.15	155.00	6.12	0.19	174.25	175.57
Duluth	19.5	103	19.2	99.8	3	500	mean3-5	0.15	152.00	6.05	0.19	175 57	115.51
Duluth	19.5	103	19.2	99.8	3	500	stddev3-5	0.00	2.65	0.07	0.00	1 15	
Duluth	19.5	103	19.2	99.8	3	500	coefvar3-5	1 74	1 74	1 10	1 10	0.65	

					Lig	ht Weight De	eflectometer						
Soil	Target	Torget	Actual	Actual	Test	Dron	Dron			Drm	amia		Three Blow
Origin	Moisture	Density	Moisture	Danaitry	Doint	Height	Number	Defl	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Duluth	19.5	103	19.2	99.8	1	900	1	0.20	196.00	8.01	0.25	180.36	
Duluth	19.5	103	19.2	99.8	1	900	2	0.20	198.00	7.93	0.25	176.75	
Duluth	19.5	103	19.2	99.8	1	900	3	0.20	199.00	8.04	0.26	178.30	178.47
Duluth	19.5	103	19.2	99.8	1	900	4	0.20	199.00	7.96	0.25	176.53	177.19
Duluth	19.5	103	19.2	99.8	1	900	5	0.20	200.00	7.94	0.25	175.20	176.68
Duluth	19.5	103	19.2	99.8	1	900	mean3-5	0.20	199.33	7.98	0.25	176.68	
Duluth	19.5	103	19.2	99.8	1	900	stddev3-5	0.00	0.58	0.05	0.00	1.55	
Duluth	19.5	103	19.2	99.8	1	900	coefvar3-5	0.29	0.29	0.66	0.66	0.88	
Duluth	19.5	103	19.2	99.8	2	900	1	0.24	240.00	8.50	0.27	156.30	
Duluth	19.5	103	19.2	99.8	2	900	2	0.24	238.00	8.31	0.26	154.09	
Duluth	19.5	103	19.2	99.8	2	900	3	0.24	236.00	8.38	0.27	156.71	155.70
Duluth	19.5	103	19.2	99.8	2	900	4	0.24	240.00	8.34	0.27	153.36	154.72
Duluth	19.5	103	19.2	99.8	2	900	5	0.25	248.00	8.50	0.27	151.26	153.77
Duluth	19.5	103	19.2	99.8	2	900	mean3-5	0.24	241.33	8.41	0.27	153.77	
Duluth	19.5	103	19.2	99.8	2	900	stddev3-5	0.01	6.11	0.08	0.00	2.75	
Duluth	19.5	103	19.2	99.8	2	900	coefvar3-5	2.53	2.53	0.99	0.99	1.79	
Duluth	19.5	103	19.2	99.8	3	900	1	0.24	240.00	8.09	0.26	148.76	
Duluth	19.5	103	19.2	99.8	3	900	2	0.25	250.00	8.20	0.26	144.75	
Duluth	19.5	103	19.2	99.8	3	900	3	0.25	249.00	8.20	0.26	145.33	146.28
Duluth	19.5	103	19.2	99.8	3	900	4	0.25	249.00	8.20	0.26	145.33	145.14
Duluth	19.5	103	19.2	99.8	3	900	5	0.25	254.00	8.18	0.26	142.13	144.27
Duluth	19.5	103	19.2	99.8	3	900	mean3-5	0.25	250.67	8.19	0.26	144.27	
Duluth	19.5	103	19.2	99.8	3	900	stddev3-5	0.00	2.89	0.01	0.00	1.85	
Duluth	19.5	103	19.2	99.8	3	900	coefvar3-5	1 15	1.15	0.14	0.14	1.00	
Duluth	16	103	17.4	95.8	1	100	1	0.09	90.00	3.95	0.13	193.69	
Duluth	16	103	17.4	95.8	1	100	2	0.13	127.00	3.76	0.12	130.66	
Duluth	16	103	17.4	95.8	1	100	3	0.10	95.00	3.88	0.12	180.24	168 20
Duluth	16	103	17.4	95.8	1	100	4	0.10	96.00	3.96	0.12	182.04	164.32
Duluth	16	103	17.4	95.8	1	100	5	0.10	96.00	3.94	0.13	181.13	181.14
Duluth	16	103	17.4	95.8	1	100	mean3-5	0.10	95.67	3.93	0.13	181.15	101.14
Duluth	16	103	17.4	95.8	1	100	stddev3-5	0.10	0.58	0.04	0.12	0.90	
Duluth	16	103	17.4	95.8	1	100	coefvar3-5	0.60	0.60	1.06	1.06	0.50	
Duluth	16	103	17.4	95.8	2	100	1	0.00	91.00	3.61	0.11	175.07	
Duluth	16	103	17.1	95.8	2	100	2	0.09	92.00	3.63	0.12	174.13	
Duluth	16	103	17.4	95.8	2	100	3	0.09	91.00	3.61	0.12	175.07	174.76
Duluth	16	103	17.4	95.8	2	100	3	0.09	85.00	3.67	0.11	190.55	179.02
Duluth	16	103	17.4	95.8	2	100		0.09	92.00	3.64	0.12	174.61	180.08
Duluth	16	103	17.4	95.8	2	100	mean3 5	0.09	92.00 80.33	3.64	0.12	180.08	100.00
Duluth	16	103	17.4	95.8	2	100	atdday2 5	0.09	2 70	0.02	0.12	0.07	
Duluth	16	103	17.4	95.8	2	100	studev3-5	4.24	3.79	0.03	0.00	5.04	
Duluth	16	103	17.4	95.0	2	100	1	4.24	4.24	3.71	0.62	102.62	
Duluth	16	103	17.4	95.8	2	100	1	0.09	89.00	2.76	0.12	192.02	
Duluth	16	103	17.4	95.8	2	100	2	0.09	66.00	3.70	0.12	201.27	104.15
Duluth	10	103	17.4	95.0	2	100	3	0.07	86.00	2.75	0.10	102.44	194.13
Duluth	10	103	17.4	95.0	2	100	4	0.09	67.00	2.73	0.12	192.44	194.09
Duluth	16	103	17.4	95.8	2	100	5	0.07	72.00	2.90	0.09	194.97	190.23
Duluth	10	103	17.4	95.0	2	100	atdday2 5	0.07	/3.00	0.44	0.10	190.23	
Duluth	10	103	17.4	95.8	2	100	studev3-5	0.01	11.2/	0.44	0.01	4.33	
Duluth	10	103	17.4	95.8	3	100	coervar3-5	15.44	15.44	13.65	13.65	2.32	

					Lig	ht Weight De	eflectometer						
Soil	Target	Torget	Actual	Actual	Test	Dron	Dron			Drm	amia		Three Blow
Origin	Moisture	Density	Moisture	Density	Doint	Height	Number	Defl	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Duluth	16	103	17.4	95.8	1	500	1	0.15	154.00	5.88	0.19	168.50	
Duluth	16	103	17.4	95.8	1	500	2	0.15	154.00	5.83	0.19	167.07	
Duluth	16	103	17.4	95.8	1	500	3	0.16	155.00	5.91	0.19	168.27	167.95
Duluth	16	103	17.4	95.8	1	500	4	0.16	155.00	5.89	0.19	167.70	167.68
Duluth	16	103	17.4	95.8	1	500	5	0.16	155.00	5.89	0.19	167.70	167.89
Duluth	16	103	17.4	95.8	1	500	mean3-5	0.16	155.00	5.90	0.19	167.89	
Duluth	16	103	17.4	95.8	1	500	stddev3-5	0.00	0.00	0.01	0.00	0.33	
Duluth	16	103	17.4	95.8	1	500	coefvar3-5	0.00	0.00	0.20	0.20	0.20	
Duluth	16	103	17.4	95.8	2	500	1	0.15	152.00	5.88	0.19	170.72	
Duluth	16	103	17.4	95.8	2	500	2	0.15	154.00	5.89	0.19	168.79	
Duluth	16	103	17.4	95.8	2	500	3	0.15	154.00	5.89	0.19	168.79	169.43
Duluth	16	103	17.4	95.8	2	500	4	0.16	155.00	5.85	0.19	166.56	168.05
Duluth	16	103	17.4	95.8	2	500	5	0.16	158.00	5.91	0.19	165.08	166.81
Duluth	16	103	17.4	95.8	2	500	mean3-5	0.16	155.67	5.88	0.19	166.81	
Duluth	16	103	17.4	95.8	2	500	stddev3-5	0.00	2.08	0.03	0.00	1.87	
Duluth	16	103	17.4	95.8	2	500	coefvar3-5	1.34	1.34	0.52	0.52	1.12	
Duluth	16	103	17.4	95.8	3	500	1	0.15	145.00	5.64	0.18	171.66	
Duluth	16	103	17.4	95.8	3	500	2	0.14	141.00	5.69	0.18	178.09	
Duluth	16	103	17.4	95.8	3	500	3	0.15	149.00	5.69	0.18	168.53	172.76
Duluth	16	103	17.4	95.8	3	500	4	0.12	144.00	5.67	0.18	173 77	173.46
Duluth	16	103	17.4	95.8	3	500	5	0.15	146.00	5.66	0.18	171.09	171.13
Duluth	16	103	17.4	95.8	3	500	mean3-5	0.15	146.33	5.67	0.18	171.13	1,1.15
Duluth	16	103	17.4	95.8	3	500	stddev3-5	0.00	2 52	0.02	0.00	2.62	
Duluth	16	103	17.4	95.8	3	500	coefvar3-5	1.72	1.72	0.02	0.00	1.53	
Duluth	16	103	17.4	95.8	1	900	1	0.27	265.00	8.16	0.26	135.89	
Duluth	16	103	17.4	95.8	1	900	2	0.27	267.90	8 25	0.26	135.05	
Duluth	16	103	17.4	95.8	1	900	3	0.27	266.50	8.21	0.26	135.96	135.92
Duluth	16	103	17.4	95.8	1	900	4	0.27	265.80	8.18	0.26	135.82	135.89
Duluth	16	103	17.4	95.8	1	900	5	0.27	267.80	8.25	0.26	135.96	135.05
Duluth	16	103	17.4	95.8	1	900	mean3-5	0.27	266.70	8.21	0.26	135.91	100.91
Duluth	16	103	17.4	95.8	1	900	stddev3-5	0.00	1.01	0.04	0.00	0.08	
Duluth	16	103	17.4	95.8	1	900	coefvar3-5	0.38	0.38	0.43	0.43	0.06	
Duluth	16	103	17.4	95.8	2	900	1	0.24	237.00	8.19	0.26	152.51	
Duluth	16	103	17.4	95.8	2	900	2	0.24	242.00	8.27	0.26	150.81	
Duluth	16	103	17.4	95.8	2	900	3	0.24	240.00	8.11	0.26	149.13	150.82
Duluth	16	103	17.4	95.8	2	900	4	0.25	245.00	8.19	0.26	147.53	149.16
Duluth	16	103	17.4	95.8	2	900	5	0.23	239.00	8 24	0.26	152.15	149.60
Duluth	16	103	17.4	95.8	2	900	mean3-5	0.24	241.33	8.18	0.20	149.60	149.00
Duluth	16	103	17.4	95.8	2	900	stddev3-5	0.00	3 21	0.07	0.20	2 35	
Duluth	16	103	17.4	95.8	2	900	coefuer3 5	1.33	1.33	0.07	0.00	1.57	
Duluth	16	103	17.4	95.8	3	900	1	0.23	228.00	7.96	0.00	154.08	
Duluth	16	103	17.4	95.8	3	900	2	0.23	223.00	7.90	0.25	154.00	
Duluth	16	103	17.4	95.8	3	900	2	0.23	227.00	8.01	0.25	140.16	152.73
Duluth	16	103	17.4	95.8	3	900	5	0.24	237.00	7.85	0.25	150.62	152.75
Duluth	16	103	17.4	95.0	3	900	4	0.23	230.00	7.03	0.25	150.02	151.56
Duluth	16	103	17.4	95.0	2	900	magn ² 5	0.23	230.00	7.02	0.25	152.55	150.71
Duluth	16	103	17.4	95.0	3	900	stdday3 5	0.23	4.04	0.08	0.25	1.60	
Duluth	16	103	17.4	95.0	2	900	coefficer ² 5	1.74	4.04	1.01	1.01	1.00	
Duiutti	10	105	17.4	95.0	5	900	coervar5-5	1./4	1./4	1.01	1.01	1.00	

					Lig	ht Weight De	flectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Drop			Dym	amic		Three Blow
Origin	Moisture	Density	Moisture	Density	Point	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Oligin	Content	Density	Content	Density	TOIL	ficigit	Ivuilioei			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Wing	13	98	12.4	89.9	1	100	1						
Red Wing	13	98	12.4	89.9	1	100	2						
Red Wing	13	98	12.4	89.9	1	100	3						
Red Wing	13	98	12.4	89.9	1	100	4						
Red Wing	13	98	12.4	89.9	1	100	5						
Red Wing	13	98	12.4	89.9	1	100	mean3-5						
Red Wing	13	98	12.4	89.9	1	100	stddev3-5						
Red Wing	13	98	12.4	89.9	1	100	coefvar3-5						
Red Wing	13	98	12.4	89.9	2	100	1						
Red Wing	13	98	12.4	89.9	2	100	2						
Red Wing	13	98	12.4	89.9	2	100	3						
Red Wing	13	98	12.4	89.9	2	100	4						
Red Wing	13	98	12.4	89.9	2	100	5						
Red Wing	13	98	12.4	89.9	2	100	mean3-5						
Red Wing	13	98	12.4	89.9	2	100	stddev3-5						
Red Wing	13	98	12.4	89.9	2	100	coefvar3-5						
Red Wing	10	98	10.1	95.9	1	100	1	0.42	418.00	3.41	0.11	36.00	
Red Wing	10	98	10.1	95.9	1	100	2	0.27	268.00	3.34	0.11	55.00	
Red Wing	10	98	10.1	95.9	1	100	3	0.26	257.00	3.30	0.11	56.67	49.22
Red Wing	10	98	10.1	95.9	1	100	4	0.24	243.00	3.26	0.10	59.21	56.96
Red Wing	10	98	10.1	95.9	1	100	5	0.25	247.00	3.31	0.11	59.14	58.34
Red Wing	10	98	10.1	95.9	1	100	mean3-5	0.25	249.00	3.29	0.10	58.34	
Red Wing	10	98	10.1	95.9	1	100	stddev3-5	0.01	7.21	0.03	0.00	1.45	
Red Wing	10	98	10.1	95.9	1	100	coefvar3-5	2.90	2.90	0.80	0.80	2.48	
Red Wing	10	98	10.1	95.9	2	100	1	0.44	437.00	3.07	0.10	31.00	
Red Wing	10	98	10.1	95.9	2	100	2	0.27	267.00	2.96	0.09	48.93	
Red Wing	10	98	10.1	95.9	2	100	3	0.27	267.00	2.96	0.09	48.93	42.95
Red Wing	10	98	10.1	95.9	2	100	4	0.25	252.00	2.92	0.09	51.14	49.66
Red Wing	10	98	10.1	95.9	2	100	5	0.27	269.00	2.93	0.09	48.07	49.38
Red Wing	10	98	10.1	95.9	2	100	mean3-5	0.26	262.67	2.94	0.09	49.38	
Red Wing	10	98	10.1	95.9	2	100	stddev3-5	0.01	9.29	0.02	0.00	1.58	
Red Wing	10	98	10.1	95.9	2	100	coefvar3-5	3.54	3.54	0.71	0.71	3.21	
Red Wing	10	98	10.1	95.9	3	100	1	0.21	207.00	2.78	0.09	59.27	
Red Wing	10	98	10.1	95.9	3	100	2	0.14	142.00	2.70	0.09	83.91	
Red Wing	10	98	10.1	95.9	3	100	3	0.18	181.00	2.72	0.09	66.32	69.83
Red Wing	10	98	10.1	95.9	3	100	4	0.16	155.00	2.65	0.08	75.45	75.23
Red Wing	10	98	10.1	95.9	3	100	5	0.16	163.00	2.73	0.09	73.91	71.90
Red Wing	10	98	10.1	95.9	3	100	mean3-5	0.17	166.33	2.70	0.09	71.90	
Red Wing	10	98	10.1	95.9	3	100	stddev3-5	0.01	13.32	0.04	0.00	4.89	
Red Wing	10	98	10.1	95.9	3	100	coefvar3-5	8.01	8.01	1.61	1.61	6.80	

					Lig	ht Weight De	flectometer						
Soil	Target	Torget	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
Origin	Moisture	Density	Moisture	Danaity	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Politi	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Wing	10	98	10.1	95.9	1	500	1	0.47	466.00	5.18	0.16	49.06	
Red Wing	10	98	10.1	95.9	1	500	2	0.44	443.00	5.26	0.17	52.40	
Red Wing	10	98	10.1	95.9	1	500	3	0.43	429.00	5.21	0.17	53.60	51.68
Red Wing	10	98	10.1	95.9	1	500	4	0.43	431.00	5.33	0.17	54.58	53.52
Red Wing	10	98	10.1	95.9	1	500	5	0.41	414.00	5.28	0.17	56.28	54.82
Red Wing	10	98	10.1	95.9	1	500	mean3-5	0.42	424.67	5.27	0.17	54.82	
Red Wing	10	98	10.1	95.9	1	500	stddev3-5	0.01	9.29	0.06	0.00	1.36	
Red Wing	10	98	10.1	95.9	1	500	coefvar3-5	2.19	2.19	1.14	1.14	2.48	
Red Wing	10	98	10.1	95.9	2	500	1	0.45	450.00	4.88	0.16	47.86	
Red Wing	10	98	10.1	95.9	2	500	2	0.43	425.00	4.80	0.15	49.84	
Red Wing	10	98	10.1	95.9	2	500	3	0.41	413.00	4.79	0.15	51.18	49.63
Red Wing	10	98	10.1	95.9	2	500	4	0.42	417.00	4.80	0.15	50.80	50.61
Red Wing	10	98	10.1	95.9	2	500	5	0.42	422.00	4.85	0.15	50.72	50.90
Red Wing	10	98	10.1	95.9	2	500	mean3-5	0.42	417.33	4.81	0.15	50.90	
Red Wing	10	98	10.1	95.9	2	500	stddev3-5	0.00	4.51	0.03	0.00	0.25	
Red Wing	10	98	10.1	95.9	2	500	coefvar3-5	1.08	1.08	0.67	0.67	0.49	
Red Wing	10	98	10.1	95.9	3	500	1	0.51	514.00	5.31	0.17	45.59	
Red Wing	10	98	10.1	95.9	3	500	2	0.45	447.00	5.30	0.17	52.33	
Red Wing	10	98	10.1	95.9	3	500	3	0.42	423.00	5.32	0.17	55.50	51.14
Red Wing	10	98	10.1	95.9	3	500	4	0.32	323.00	4.01	0.13	54.79	54.21
Red Wing	10	98	10.1	95.9	3	500	5	0.41	412.00	5 31	0.17	56.88	55.72
Red Wing	10	98	10.1	95.9	3	500	mean3-5	0.39	386.00	4.88	0.16	55.72	00.72
Red Wing	10	98	10.1	95.9	3	500	stddev3-5	0.05	54 84	0.75	0.02	1.06	
Red Wing	10	98	10.1	95.9	3	500	coefvar3-5	14 21	14 21	15 44	15 44	1.00	
Red Wing	10	98	10.1	95.9	1	900	1	0.67	668.00	7 19	0.23	47.50	
Red Wing	10	98	10.1	95.9	1	900	2	0.63	634.00	7.25	0.23	50.47	
Red Wing	10	98	10.1	95.9	1	900	3	0.62	619.00	7.25	0.23	51.90	49.96
Red Wing	10	98	10.1	95.9	1	900	4	0.62	619.00	7.13	0.23	50.83	51.07
Red Wing	10	98	10.1	95.9	1	900	5	0.63	634.00	7.15	0.23	50.61	51.07
Red Wing	10	98	10.1	95.9	1	900	mean3-5	0.62	624.00	7.23	0.23	51.11	51.11
Red Wing	10	98	10.1	95.9	1	900	stddev3-5	0.02	8.66	0.08	0.00	0.69	
Red Wing	10	98	10.1	95.9	1	900	coefvar3-5	1 39	1 39	1.16	1.16	1.36	
Red Wing	10	98	10.1	95.9	2	900	1	0.73	730.00	7.58	0.24	45.82	
Red Wing	10	98	10.1	95.9	2	900	2	0.70	697.00	7.56	0.24	47.87	
Red Wing	10	98	10.1	95.9	2	900	3	0.70	708.00	7.50	0.24	47.87	46.96
Red Wing	10	98	10.1	95.9	2	900	3	0.71	708.00	7.57	0.24	47.19	40.90
Red Wing	10	98	10.1	95.9	2	900		0.70	690.00	7.51	0.24	47.73	47.59
Red Wing	10	98	10.1	95.9	2	900	mean3 5	0.09	600.33	7.51	0.24	48.05	47.05
Red Wing	10	98	10.1	95.9	2	900	stdday2 5	0.70	099.33	0.03	0.24	47.03	
Red Wing	10	98	10.1	95.9	2	900	studev3-5	1.20	9.02	0.03	0.00	0.43	
Red Wing	10	90	10.1	95.9	2	900	1	0.68	670.00	7.70	0.40	50.62	
Red Wing	10	98	10.1	95.9	2	900	1	0.08	679.00	1.19	0.25	51.65	
Red Wing	10	98	10.1	95.9	2	900	2	0.0/	655.00	7.85	0.25	52.76	51.69
Red Wing	10	98	10.1	95.9	2	900	3	0.00	650.00	7.85	0.25	52.70	52.57
Red Wing	10	98	10.1	95.9	3	900	4	0.65	650.00	7.85	0.25	55.30	52.57
Red Wing	10	98	10.1	95.9	3	900	5	0.63	629.00	7.88	0.25	53.29	53.78
Red Wing	10	98	10.1	95.9	3	900	mean3-5	0.04	044.0/	/.85	0.25	33./8	
Red Wing	10	98	10.1	95.9	3	900	stadev3-5	0.01	13.80	0.03	0.00	1.33	
Red Wing	10	98	10.1	95.9	3	900	coetvar3-5	2.14	2.14	0.32	0.32	2.48	

					Lig	ht Weight De	flectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Dum	omio		Three Blow
Origin	Moisture	Density	Moisture	Danaity	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Politi	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Wing	8	98	8.4	95	1	100	1	0.14	144.00	2.65	0.08	81.22	
Red Wing	8	98	8.4	95	1	100	2	0.10	102.00	2.56	0.08	110.76	
Red Wing	8	98	8.4	95	1	100	3	0.11	109.00	2.55	0.08	103.24	98.41
Red Wing	8	98	8.4	95	1	100	4	0.11	109.00	2.55	0.08	103.24	105.75
Red Wing	8	98	8.4	95	1	100	5	0.09	90.00	2.57	0.08	126.02	110.84
Red Wing	8	98	8.4	95	1	100	mean3-5	0.10	102.67	2.56	0.08	110.84	
Red Wing	8	98	8.4	95	1	100	stddev3-5	0.01	10.97	0.01	0.00	13.15	
Red Wing	8	98	8.4	95	1	100	coefvar3-5	10.68	10.68	0.45	0.45	11.86	
Red Wing	8	98	8.4	95	2	100	1	0.14	135.00	2.64	0.08	86.30	
Red Wing	8	98	8.4	95	2	100	2	0.10	101.00	2.68	0.09	117.10	
Red Wing	8	98	8.4	95	2	100	3	0.10	102.00	2.63	0.08	113.79	105.73
Red Wing	8	98	8.4	95	2	100	4	0.11	107.00	2.67	0.08	110.12	113.67
Red Wing	8	98	8.4	95	2	100	5	0.11	107.00	2.60	0.08	107.24	110.38
Red Wing	8	98	8.4	95	2	100	mean3-5	0.11	105.33	2.63	0.08	110.38	
Red Wing	8	98	8.4	95	2	100	stddev3-5	0.00	2.89	0.04	0.00	3.29	
Red Wing	8	98	8.4	95	2	100	coefvar3-5	2.74	2.74	1.33	1.33	2.98	
Red Wing	8	98	8.4	95	3	100	1	0.11	111.00	2.95	0.09	117.29	
Red Wing	8	98	8.4	95	3	100	2	0.08	75.00	2.75	0.09	161.82	
Red Wing	8	98	8.4	95	3	100	3	0.07	71.00	2.82	0.09	175.29	151.46
Red Wing	8	98	8.4	95	3	100	4	0.07	73.00	2.81	0.09	169.88	168.99
Red Wing	8	98	8.4	95	3	100	5	0.08	79.00	2.78	0.09	155.30	166.82
Red Wing	8	98	8.4	95	3	100	mean3-5	0.07	74.33	2.80	0.09	166.82	
Red Wing	8	98	8.4	95	3	100	stddev3-5	0.00	4.16	0.02	0.00	10.34	
Red Wing	8	98	8.4	95	3	100	coefvar3-5	5.60	5.60	0.74	0.74	6.20	
Red Wing	8	98	8.4	95	1	500	1	0.37	371.00	5.97	0.19	71.02	
Red Wing	8	98	8.4	95	1	500	2	0.34	340.00	5.98	0.19	77.62	
Red Wing	8	98	8.4	95	1	500	3	0.34	341.00	6.03	0.19	78.04	75.56
Red Wing	8	98	8.4	95	1	500	4	0.34	338.00	5.98	0.19	78.08	77.91
Red Wing	8	98	8.4	95	1	500	5	0.33	330.00	5.85	0.19	78.23	78.12
Red Wing	8	98	8.4	95	1	500	mean3-5	0.34	336.33	5.95	0.19	78.12	
Red Wing	8	98	8.4	95	l	500	stddev3-5	0.01	5.69	0.09	0.00	0.10	
Red Wing	8	98	8.4	95	1	500	coefvar3-5	1.69	1.69	1.56	1.56	0.13	
Red Wing	8	98	8.4	95	2	500	1	0.30	304.00	5.58	0.18	81.01	
Red Wing	8	98	8.4	95	2	500	2	0.28	279.00	5.59	0.18	88.42	05.05
Ked Wing	8	98	8.4	95	2	500	3	0.28	281.00	5.61	0.18	88.11	85.85
Red Wing	8	98	8.4	95	2	500	4	0.28	282.00	5.57	0.18	87.17	87.90
Red Wing	8	98	8.4	95	2	500	5	0.28	282.00	5.64	0.18	88.26	87.85
Red Wing	8	98	8.4	95	2	500	mean3-5	0.28	281.67	5.61	0.18	87.85	
Red Wing	8	98	8.4	95	2	500	stadev3-5	0.00	0.58	0.04	0.00	0.59	
Red Wing	8	98	8.4	95	2	500	coervar3-5	0.20	0.20	0.63	0.63	0.67	
Red Wing	8	98	8.4	95	3	500	1	0.1/	169.00	5.22	0.17	130.31	
Red Wing	8	98	8.4	95	3	500	2	0.16	159.00	5.27	0.17	140.27	141.00
Red Wing	8	98	8.4	95	3	500	3	0.16	161.00	5.23	0.17	145.50	141.98
Red Wing	8	98	8.4	95	3	500	4 £	0.16	150.00	5.30	0.17	140.19	145.27
Red Wing	8	98	8.4	95	3	500	5 maan 2 5	0.16	159.00	5.20	0.17	140.00	145.18
Red Wing	8	98	8.4	95	2	500	means-5	0.10	100.00	3.20	0.17	143.18	
Red Wing	8	98	0.4	95	2	500	studev3-5	0.00	1.00	0.04	0.00	1.38	
Keu wing	ð	98	8.4	95	3	500	coervars-5	0.05	0.05	0.07	0.07	1.09	

					Lig	ht Weight De	flectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Dum	omio		Three Blow
Origin	Moisture	Dangity	Moisture	Danaity	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Politi	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Wing	8	98	8.4	95	1	900	1	0.61	611.00	8.51	0.27	61.47	
Red Wing	8	98	8.4	95	1	900	2	0.58	579.00	8.53	0.27	65.02	
Red Wing	8	98	8.4	95	1	900	3	0.57	567.00	8.62	0.27	67.09	64.53
Red Wing	8	98	8.4	95	1	900	4	0.58	577.00	8.65	0.28	66.16	66.09
Red Wing	8	98	8.4	95	1	900	5	0.58	576.00	8.64	0.28	66.20	66.48
Red Wing	8	98	8.4	95	1	900	mean3-5	0.57	573.33	8.64	0.27	66.48	
Red Wing	8	98	8.4	95	1	900	stddev3-5	0.01	5.51	0.02	0.00	0.53	
Red Wing	8	98	8.4	95	1	900	coefvar3-5	0.96	0.96	0.18	0.18	0.79	
Red Wing	8	98	8.4	95	2	900	1	0.54	539.00	8.40	0.27	68.78	
Red Wing	8	98	8.4	95	2	900	2	0.52	523.00	8.52	0.27	71.89	
Red Wing	8	98	8.4	95	2	900	3	0.54	535.00	8.63	0.27	71.19	70.62
Red Wing	8	98	8.4	95	2	900	4	0.53	527.00	8.54	0.27	71.52	71.53
Red Wing	8	98	8.4	95	2	900	5	0.53	533.00	8.57	0.27	70.96	71.22
Red Wing	8	98	8.4	95	2	900	mean3-5	0.53	531.67	8.58	0.27	71.22	
Red Wing	8	98	8.4	95	2	900	stddev3-5	0.00	4.16	0.05	0.00	0.28	
Red Wing	8	98	8.4	95	2	900	coefvar3-5	0.78	0.78	0.53	0.53	0.39	
Red Wing	8	98	8.4	95	3	900	1	0.33	331.00	8.61	0.27	114.80	
Red Wing	8	98	8.4	95	3	900	2	0.38	378.00	8.62	0.27	100.64	
Red Wing	8	98	8.4	95	3	900	3	0.34	338.00	8.70	0.28	113.59	109.68
Red Wing	8	98	8.4	95	3	900	4	0.35	345.00	8.69	0.28	111.16	108.47
Red Wing	8	98	8.4	95	3	900	5	0.34	340.00	8 70	0.28	112.93	112.56
Red Wing	8	98	8.4	95	3	900	mean3-5	0.34	341.00	8.70	0.28	112.56	112.00
Red Wing	8	98	8.4	95	3	900	stddev3-5	0.00	3.61	0.01	0.00	1 26	
Red Wing	8	98	8.4	95	3	900	coefvar3-5	1.06	1.06	0.07	0.07	1.12	
Red Wing	12	103	11.3	94.8	1	100	1	0.16	164.00	2.83	0.09	76.15	
Red Wing	12	103	11.3	94.8	1	100	2	0.12	117.00	2.74	0.09	103.35	
Red Wing	12	103	11.3	94.8	1	100	3	0.12	121.00	2.71	0.09	98.84	92.78
Red Wing	12	103	11.3	94.8	1	100	4	0.12	123.00	2.73	0.09	97.95	100.05
Red Wing	12	103	11.3	94.8	1	100	5	0.11	112.00	2.74	0.09	107.97	101.59
Red Wing	12	103	11.3	94.8	1	100	mean3-5	0.12	118.67	2.73	0.09	101 59	101.07
Red Wing	12	103	11.3	94.8	1	100	stddev3-5	0.01	5.86	0.02	0.00	5 54	
Red Wing	12	103	11.3	94.8	1	100	coefvar3-5	4 94	4 94	0.56	0.56	5.46	
Red Wing	12	103	11.3	94.8	2	100	1	0.23	227.00	3.40	0.11	66.10	
Red Wing	12	103	11.3	94.8	2	100	2	0.17	171.00	3 32	0.11	85.68	
Red Wing	12	103	11.3	94.8	2	100	3	0.20	195.00	3 35	0.11	75.82	75.87
Red Wing	12	103	11.3	94.8	2	100	4	0.17	174.00	3 38	0.11	85.73	82.41
Red Wing	12	103	11.3	94.8	2	100	5	0.16	163.00	3 36	0.11	90.97	84.17
Red Wing	12	103	11.3	94.8	2	100	mean3-5	0.18	177.33	3 36	0.11	84.17	0
Red Wing	12	103	11.3	94.8	2	100	stddev3-5	0.02	16.26	0.02	0.00	7 70	
Red Wing	12	103	11.3	94.8	2	100	coefvar3-5	9.17	9.17	0.02	0.00	9.14	
Red Wing	12	103	11.3	94.8	3	100	1	0.21	208.00	3.16	0.10	67.05	
Red Wing	12	103	11.3	94.8	3	100	2	0.21	212.00	2.99	0.10	62.24	
Red Wing	12	103	11.3	94.8	3	100	3	0.21	213.00	3.00	0.10	62.16	63.82
Red Wing	12	103	11.3	94.8	3	100	4	0.17	167.00	3.11	0.10	82.10	68.86
Red Wing	12	103	11.3	94.8	3	100	5	0.16	159.00	3.15	0.10	87.43	77.26
Red Wing	12	103	11.3	94.8	3	100	mean3-5	0.10	179.67	3.09	0.10	77.26	11.20
Red Wing	12	103	11.3	94.8	3	100	stddev3-5	0.03	29.14	0.08	0.00	13.34	
Red Wing	12	103	11.3	94.8	3	100	coefvar3-5	16.22	16.22	2.52	2.52	17.26	

					Lig	ht Weight De	flectometer						
Soil	Target	Torgot	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
Origin	Moisture	Danaitre	Moisture	Danaity	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Politi	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Wing	12	103	11.3	94.8	1	500	1	0.25	252.00	4.85	0.15	84.94	
Red Wing	12	103	11.3	94.8	1	500	2	0.25	246.00	4.90	0.16	87.91	
Red Wing	12	103	11.3	94.8	1	500	3	0.25	246.00	4.90	0.16	87.91	86.92
Red Wing	12	103	11.3	94.8	1	500	4	0.24	244.00	4.87	0.16	88.08	87.96
Red Wing	12	103	11.3	94.8	1	500	5	0.25	250.00	4.81	0.15	84.91	86.97
Red Wing	12	103	11.3	94.8	1	500	mean3-5	0.25	246.67	4.86	0.15	86.97	
Red Wing	12	103	11.3	94.8	1	500	stddev3-5	0.00	3.06	0.05	0.00	1.78	
Red Wing	12	103	11.3	94.8	1	500	coefvar3-5	1.24	1.24	0.94	0.94	2.05	
Red Wing	12	103	11.3	94.8	2	500	1	0.30	303.00	5.32	0.17	77.49	
Red Wing	12	103	11.3	94.8	2	500	2	0.32	315.00	5.35	0.17	74.95	
Red Wing	12	103	11.3	94.8	2	500	3	0.30	302.00	5.38	0.17	78.62	77.02
Red Wing	12	103	11.3	94.8	2	500	4	0.31	306.00	5.32	0.17	76.73	76.77
Red Wing	12	103	11.3	94.8	2	500	5	0.39	385.00	5.28	0.17	60.52	71.96
Red Wing	12	103	11.3	94.8	2	500	mean3-5	0.33	331.00	5.33	0.17	71.96	
Red Wing	12	103	11.3	94.8	2	500	stddev3-5	0.05	46.81	0.05	0.00	9.95	
Red Wing	12	103	11.3	94.8	2	500	coefvar3-5	14.14	14.14	0.94	0.94	13.82	
Red Wing	12	103	11.3	94.8	3	500	1	0.39	394.00	5.43	0.17	60.82	
Red Wing	12	103	11.3	94.8	3	500	2	0.38	382.00	5.36	0.17	61.92	
Red Wing	12	103	11.3	94.8	3	500	3	0.38	384.00	5.41	0.17	62.18	61.64
Red Wing	12	103	11.3	94.8	3	500	4	0.45	450.00	5.23	0.17	51.29	58.46
Red Wing	12	103	11.3	94.8	3	500	5	0.45	450.00	5.23	0.17	51.29	54.92
Red Wing	12	103	11.3	94.8	3	500	mean3-5	0.43	428.00	5.29	0.17	54.92	
Red Wing	12	103	11.3	94.8	3	500	stddev3-5	0.04	38.11	0.10	0.00	6.28	
Red Wing	12	103	11.3	94.8	3	500	coefvar3-5	8.90	8.90	1.96	1.96	11.44	
Red Wing	12	103	11.3	94.8	1	900	1	0.39	392.00	6.84	0.22	77.01	
Red Wing	12	103	11.3	94.8	1	900	2	0.39	392.00	6.76	0.22	76.11	
Red Wing	12	103	11.3	94.8	1	900	3	0.39	394.00	6.77	0.22	75.83	76.31
Red Wing	12	103	11.3	94.8	1	900	4	0.40	403.00	6.74	0.21	73.81	75.25
Red Wing	12	103	11.3	94.8	1	900	5	0.39	387.00	6.77	0.22	77.20	75.61
Red Wing	12	103	11.3	94.8	1	900	mean3-5	0.39	394.67	6.76	0.22	75.61	
Red Wing	12	103	11.3	94.8	1	900	stddev3-5	0.01	8.02	0.02	0.00	1.71	
Red Wing	12	103	11.3	94.8	1	900	coefvar3-5	2.03	2.03	0.26	0.26	2.26	
Red Wing	12	103	11.3	94.8	2	900	1	0.46	462.00	6.96	0.22	66.48	
Red Wing	12	103	11.3	94.8	2	900	2	0.46	457.00	6.93	0.22	66.92	
Red Wing	12	103	11.3	94.8	2	900	3	0.47	465.00	6.97	0.22	66.15	66.52
Red Wing	12	103	11.3	94.8	2	900	4	0.46	455.00	6.95	0.22	67.41	66.83
Red Wing	12	103	11.3	94.8	2	900	5	0.46	462.00	6.91	0.22	66.01	66.52
Red Wing	12	103	11.3	94.8	2	900	mean3-5	0.46	460.67	6.94	0.22	66.52	
Red Wing	12	103	11.3	94.8	2	900	stddev3-5	0.01	5.13	0.03	0.00	0.77	
Red Wing	12	103	11.3	94.8	2	900	coefvar3-5	1.11	1.11	0.44	0.44	1.16	
Red Wing	12	103	11.3	94.8	3	900	1	0.59	591.00	7.29	0.23	54.44	
Red Wing	12	103	11.3	94.8	3	900	2	0.56	563.00	7.31	0.23	57.30	
Red Wing	12	103	11.3	94.8	3	900	3	0.56	559.00	7.33	0.23	57.87	56.54
Red Wing	12	103	11.3	94.8	3	900	4	0.68	679.00	7.26	0.23	47.19	54.12
Red Wing	12	103	11.3	94.8	3	900	5	0.60	595.00	7.39	0.24	54.81	53.29
Red Wing	12	103	11.3	94.8	3	900	mean3-5	0.61	611.00	7.33	0.23	53.29	
Red Wing	12	103	11.3	94.8	3	900	stddev3-5	0.06	61.58	0.07	0.00	5.50	
Red Wing	12	103	11.3	94.8	3	900	coefvar3-5	10.08	10.08	0.89	0.89	10.32	

					Lig	ht Weight De	flectometer						
Soil	Target	Target	Actual	Actual	Test	Drop	Dron			Dum	omio		Three Blow
Origin	Moisture	Dangity	Moisture	Domaitry	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Politi	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Wing	9.5	103	9.4	99.1	1	100	1	0.16	164.00	3.74	0.12	100.64	
Red Wing	9.5	103	9.4	99.1	1	100	2	0.16	159.00	3.75	0.12	104.09	
Red Wing	9.5	103	9.4	99.1	1	100	3	0.16	160.00	3.65	0.12	100.68	101.80
Red Wing	9.5	103	9.4	99.1	1	100	4	0.17	172.00	3.78	0.12	96.99	100.58
Red Wing	9.5	103	9.4	99.1	1	100	5	0.17	167.00	3.69	0.12	97.51	98.39
Red Wing	9.5	103	9.4	99.1	1	100	mean3-5	0.17	166.33	3.71	0.12	98.39	
Red Wing	9.5	103	9.4	99.1	1	100	stddev3-5	0.01	6.03	0.07	0.00	2.00	
Red Wing	9.5	103	9.4	99.1	1	100	coefvar3-5	3.62	3.62	1.80	1.80	2.03	
Red Wing	9.5	103	9.4	99.1	2	100	1	0.15	148.00	3.09	0.10	92.14	
Red Wing	9.5	103	9.4	99.1	2	100	2	0.13	129.00	3.09	0.10	105.71	
Red Wing	9.5	103	9.4	99.1	2	100	3	0.12	123.00	3.00	0.10	107.64	101.83
Red Wing	9.5	103	9.4	99.1	2	100	4	0.12	124.00	3.08	0.10	109.62	107.66
Red Wing	9.5	103	9.4	99.1	2	100	5	0.12	124.00	3.08	0.10	109.62	108.96
Red Wing	9.5	103	9.4	99.1	2	100	mean3-5	0.12	123.67	3.05	0.10	108.96	
Red Wing	9.5	103	9.4	99.1	2	100	stddev3-5	0.00	0.58	0.05	0.00	1.14	
Red Wing	9.5	103	9.4	99.1	2	100	coefvar3-5	0.47	0.47	1.51	1.51	1.05	
Red Wing	9.5	103	9.4	99.1	3	100	1	0.16	159.00	3.23	0.10	89.65	
Red Wing	9.5	103	9.4	99.1	3	100	2	0.12	123.00	3.22	0.10	115.53	
Red Wing	9.5	103	9.4	99.1	3	100	3	0.12	122.00	3.23	0.10	116.84	107.34
Red Wing	9.5	103	9.4	99.1	3	100	4	0.13	125.00	3.25	0.10	114.74	115.71
Red Wing	9.5	103	9.4	99.1	3	100	5	0.13	125.00	3.28	0.10	115.80	115.80
Red Wing	9.5	103	9.4	99.1	3	100	mean3-5	0.12	124.00	3.25	0.10	115.80	
Red Wing	9.5	103	9.4	99.1	3	100	stddev3-5	0.00	1.73	0.03	0.00	1.05	
Red Wing	9.5	103	9.4	99.1	3	100	coefvar3-5	1.40	1.40	0.77	0.77	0.91	
Red Wing	9.5	103	9.4	99.1	1	500	1	0.36	358.00	5.84	0.19	71.99	
Red Wing	9.5	103	9.4	99.1	1	500	2	0.33	332.00	5.88	0.19	78.16	
Red Wing	9.5	103	9.4	99.1	1	500	3	0.33	329.00	5.80	0.18	77.80	75.98
Red Wing	9.5	103	9.4	99.1	1	500	4	0.34	336.00	5.82	0.19	76.44	77.47
Red Wing	9.5	103	9.4	99.1	1	500	5	0.33	330.00	5.86	0.19	78.37	77.54
Red Wing	9.5	103	9.4	99.1	1	500	mean3-5	0.33	331.67	5.83	0.19	77.54	
Red Wing	9.5	103	9.4	99.1	1	500	stddev3-5	0.00	3.79	0.03	0.00	0.99	
Red Wing	9.5	103	9.4	99.1	1	500	coefvar3-5	1.14	1.14	0.52	0.52	1.28	
Red Wing	9.5	103	9.4	99.1	2	500	1	0.31	308.00	5.58	0.18	79.95	
Red Wing	9.5	103	9.4	99.1	2	500	2	0.29	292.00	5.64	0.18	85.24	
Red Wing	9.5	103	9.4	99.1	2	500	3	0.29	291.00	5.66	0.18	85.84	83.68
Red Wing	9.5	103	9.4	99.1	2	500	4	0.29	294.00	5.59	0.18	83.91	85.00
Red Wing	9.5	103	9.4	99.1	2	500	5	0.29	292.00	5.58	0.18	84.33	84.69
Red Wing	9.5	103	9.4	99.1	2	500	mean3-5	0.29	292.33	5.61	0.18	84.69	01.07
Red Wing	9.5	103	9.4	99.1	2	500	stddev3-5	0.00	1.53	0.04	0.00	1.01	
Red Wing	9.5	103	9.4	99.1	2	500	coefvar3-5	0.52	0.52	0.78	0.78	1.01	
Red Wing	95	103	9.4	99.1	3	500	1	0.28	284.00	5.27	0.17	81.89	
Red Wing	95	103	9.4	99.1	3	500	2	0.20	266.00	5.29	0.17	87.77	
Red Wing	95	103	9.4	99.1	3	500	3	0.27	264.00	5.32	0.17	88.93	86.20
Red Wing	95	103	9.4	99.1	3	500	4	0.20	266.00	5 31	0.17	88.10	88.27
Red Wing	95	103	9.4	99.1	3	500	5	0.27	260.00	5 33	0.17	90.47	89.17
Red Wing	9.5	103	9.4	99.1	3	500	mean3-5	0.20	263.33	5.32	0.17	89.17	07.17
Red Wing	9.5	103	94	99.1	3	500	stddev3-5	0.00	3.06	0.01	0.00	1 20	
Red Wing	95	103	9.4	99.1	3	500	coefvar3-5	1.16	1.16	0.19	0.19	1.35	

					Lig	ht Weight De	eflectometer						
e ail	Target	Targat	Actual	Astual	Teat	Dron	Dron			Dem			Three Blow
5011	Moisture	Target	Moisture	Actual	Test		Diop	Defl	ection	Dyn	amic	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Wing	9.5	103	9.4	99.1	1	900	1	0.51	509.00	7.58	0.24	65.72	
Red Wing	9.5	103	9.4	99.1	1	900	2	0.50	499.00	7.53	0.24	66.60	
Red Wing	9.5	103	9.4	99.1	1	900	3	0.49	489.00	7.71	0.25	69.58	67.30
Red Wing	9.5	103	9.4	99.1	1	900	4	0.48	476.00	7.58	0.24	70.28	68.82
Red Wing	9.5	103	9.4	99.1	1	900	5	0.48	484.00	7.64	0.24	69.66	69.84
Red Wing	9.5	103	9.4	99.1	1	900	mean3-5	0.48	483.00	7.64	0.24	69.84	
Red Wing	9.5	103	9.4	99.1	1	900	stddev3-5	0.01	6.56	0.07	0.00	0.38	
Red Wing	9.5	103	9.4	99.1	1	900	coefvar3-5	1.36	1.36	0.85	0.85	0.54	
Red Wing	9.5	103	9.4	99.1	2	900	1	0.48	480.00	7.90	0.25	72.63	
Red Wing	9.5	103	9.4	99.1	2	900	2	0.47	471.00	7.89	0.25	73.93	
Red Wing	9.5	103	9.4	99.1	2	900	3	0.48	475.00	7.89	0.25	73.31	73.29
Red Wing	9.5	103	9.4	99.1	2	900	4	0.48	480.00	7.90	0.25	72.63	73.29
Red Wing	9.5	103	9.4	99.1	2	900	5	0.48	475.00	7.95	0.25	73.86	73.27
Red Wing	9.5	103	9.4	99.1	2	900	mean3-5	0.48	476.67	7.91	0.25	73.27	
Red Wing	9.5	103	9.4	99.1	2	900	stddev3-5	0.00	2.89	0.03	0.00	0.62	
Red Wing	9.5	103	9.4	99.1	2	900	coefvar3-5	0.61	0.61	0.41	0.41	0.84	
Red Wing	9.5	103	9.4	99.1	3	900	1	0.46	462.00	7 46	0.24	71.26	
Red Wing	9.5	103	9.4	99.1	3	900	2	0.45	448.00	7.62	0.24	75.06	
Red Wing	9.5	103	9.4	99.1	3	900	3	0.43	434.00	7.62	0.24	77.49	74.60
Red Wing	9.5	103	9.4	99.1	3	900	4	0.44	439.00	7.60	0.24	76.40	76.32
Red Wing	9.5	103	9.4	99.1	3	900	5	0.44	435.00	7.62	0.24	77.31	77.06
Red Wing	9.5	103	9.4	99.1	3	900	mean3-5	0.44	436.00	7.61	0.24	77.06	77.00
Red Wing	9.5	103	9.4	99.1	3	900	stddev3-5	0.00	2 65	0.01	0.00	0.58	
Red Wing	9.5	103	9.4	99.1	3	900	coefvar3-5	0.61	0.61	0.01	0.00	0.38	
Red Wing	8	103	8.4	96.2	1	100	1	0.01	78.00	3.18	0.10	179.92	
Red Wing	8	103	8.4	96.2	1	100	2	0.08	78.00	3.18	0.10	179.92	
Red Wing	8	103	8.4	96.2	1	100	2	0.08	76.00	3.16	0.10	183.50	181 11
Red Wing	8	103	8.4	96.2	1	100	3	0.03	70.00	3.10	0.10	100.25	184.55
Red Wing	8	103	8.4	96.2	1	100		0.07	73.00	3.15	0.10	190.23	188.06
Red Wing	8	103	8.4	96.2	1	100	mean3 5	0.07	73.00	3.17	0.10	190.45	188.00
Red Wing	8	103	8.4	96.2	1	100	stddev3 5	0.07	1.53	0.02	0.10	3.05	
Red Wing	8	103	8.4	96.2	1	100	studev5-5	2.05	2.05	0.02	0.00	2.10	
Red Wing	8	103	8.4	96.2	2	100	1	0.11	112.00	3.17	0.00	124.01	
Red Wing	8	103	8.4 8.4	96.2	2	100	2	0.11	112.00	3.17	0.10	124.91	
Red Wing	8	103	0.4 8.4	96.2	2	100	2	0.11	101.00	3.11	0.10	127.23	120.34
Red Wing	0	103	8.4 8.4	96.2	2	100	3	0.10	101.00	2.16	0.10	120.46	127.54
Red Wing	8	103	0.4 9.4	90.2	2	100	4	0.10	00.00	2.11	0.10	139.40	134.19
Red Wing	0 0	103	0.4 9.4	90.2	2	100	J maan2 5	0.10	100.00	3.11	0.10	138.04	138.00
Red Wing	0	103	0.4 9.4	90.2	2	100	atdday2 5	0.10	1.00	0.02	0.10	1 87	
Red Wing	0	103	0.4	90.2	2	100	studev3-3	1.00	1.00	0.03	0.00	1.67	
Red Wing	8	103	8.4	90.2	2	100	coervar3-5	1.00	1.00	0.92	0.92	1.55	
Red Wing	8	103	8.4	96.2	3	100	1	0.08	84.00	2.88	0.09	151.51	
Red Wing	8	103	8.4	96.2	3	100	2	0.07	05.00	2.99	0.10	203.01	175.05
Red wing	8	103	8.4	96.2	3	100	5	0.0/	/4.00	2.91	0.09	1/3.55	1/5.95
Red Wing	8	103	8.4	96.2	3	100	4	0.06	64.00	2.95	0.09	203.42	193.33
Red Wing	8	103	8.4	96.2	3	100	5	0.07	72.00	3.07	0.10	188.17	188.38
Red Wing	8	103	8.4	96.2	3	100	mean3-5	0.07	/0.00	2.98	0.09	188.38	
Red Wing	8	103	8.4	96.2	3	100	stddev3-5	0.01	5.29	0.08	0.00	14.94	
Red Wing	8	103	8.4	96.2	3	100	coetvar3-5	7.56	7.56	2.80	2.80	7.93	

					Lig	ht Weight De	eflectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Dum	omio		Three Blow
Origin	Moisture	Density	Moisture	Danaity	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Politi	Height	INUITIDEI			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Wing	8	103	8.4	96.2	1	500	1	0.16	155.00	5.59	0.18	159.16	
Red Wing	8	103	8.4	96.2	1	500	2	0.16	159.00	5.72	0.18	158.76	
Red Wing	8	103	8.4	96.2	1	500	3	0.16	161.00	5.62	0.18	154.05	157.33
Red Wing	8	103	8.4	96.2	1	500	4	0.17	166.00	5.54	0.18	147.28	153.37
Red Wing	8	103	8.4	96.2	1	500	5	0.17	166.00	5.54	0.18	147.28	149.54
Red Wing	8	103	8.4	96.2	1	500	mean3-5	0.16	164.33	5.57	0.18	149.54	
Red Wing	8	103	8.4	96.2	1	500	stddev3-5	0.00	2.89	0.05	0.00	3.91	
Red Wing	8	103	8.4	96.2	1	500	coefvar3-5	1.76	1.76	0.83	0.83	2.61	
Red Wing	8	103	8.4	96.2	2	500	1	0.16	155.00	4.80	0.15	136.67	
Red Wing	8	103	8.4	96.2	2	500	2	0.16	156.00	4.73	0.15	133.81	
Red Wing	8	103	8.4	96.2	2	500	3	0.16	156.00	4.81	0.15	136.07	135.52
Red Wing	8	103	8.4	96.2	2	500	4	0.15	153.00	4.83	0.15	139.32	136.40
Red Wing	8	103	8.4	96.2	2	500	5	0.18	176.00	4.78	0.15	119.86	131.75
Red Wing	8	103	8.4	96.2	2	500	mean3-5	0.16	161.67	4.81	0.15	131.75	
Red Wing	8	103	8.4	96.2	2	500	stddev3-5	0.01	12.50	0.03	0.00	10.43	
Red Wing	8	103	8.4	96.2	2	500	coefvar3-5	7.73	7.73	0.52	0.52	7.91	
Red Wing	8	103	8.4	96.2	3	500	1	0.12	119.00	4.99	0.16	185.06	
Red Wing	8	103	8.4	96.2	3	500	2	0.12	120.00	4.88	0.16	179.47	
Red Wing	8	103	8.4	96.2	3	500	3	0.13	132.00	4.83	0.15	161.48	175.34
Red Wing	8	103	8.4	96.2	3	500	4	0.12	122.00	4 98	0.16	180.15	173 70
Red Wing	8	103	8.4	96.2	3	500	5	0.12	122.00	4 97	0.16	179.78	173.80
Red Wing	8	103	8.4	96.2	3	500	mean3-5	0.12	125.33	4 93	0.16	173.80	175.00
Red Wing	8	103	8.4	96.2	3	500	stddev3-5	0.01	5 77	0.08	0.00	10.67	
Red Wing	8	103	8.4	96.2	3	500	coefvar3-5	4 61	4 61	1 70	1 70	6.14	
Red Wing	8	103	8.4	96.2	1	900	1	0.30	300.00	8 25	0.26	121.36	
Red Wing	8	103	8.4	96.2	1	900	2	0.31	308.00	8.26	0.26	118 35	
Red Wing	8	103	8.4	96.2	1	900	3	0.30	303.00	8.13	0.26	118.41	119 38
Red Wing	8	103	8.4	96.2	1	900	4	0.31	311.00	8 31	0.26	117.92	118.23
Red Wing	8	103	8.4	96.2	1	900	5	0.31	313.00	8.15	0.26	114.91	117.08
Red Wing	8	103	8.4	96.2	1	900	mean3-5	0.31	309.00	8 20	0.26	117.08	117.00
Red Wing	8	103	8.4	96.2	1	900	stddev3-5	0.01	5 29	0.10	0.00	1 90	
Red Wing	8	103	8.4	96.2	1	900	coefyar3-5	1.71	1.71	1.20	1.20	1.50	
Red Wing	8	103	8.4	96.2	2	900	1	0.25	251.00	7.00	0.22	123.08	
Red Wing	8	103	8.4	96.2	2	900	2	0.25	248.00	7.00	0.22	125.80	
Red Wing	8	103	8.4	96.2	2	900	3	0.25	256.00	7.03	0.23	123.01	123.36
Red Wing	8	103	8.4	96.2	2	900	4	0.20	257.00	7.09	0.22	121.15	122.50
Red Wing	8	103	8.4	96.2	2	900		0.26	263.00	7.05	0.23	121.75	122.92
Red Wing	8	103	8.4	96.2	2	900	mean3 5	0.20	263.00	7.24	0.23	121.49	121.40
Red Wing	8	103	8.4	96.2	2	900	stddev3 5	0.20	3 70	0.11	0.23	0.28	
Red Wing	8	103	8.4	96.2	2	900	coefuar3 5	1.46	1.46	1.52	1.52	0.23	
Red Wing	8	103	8.4	96.2	2	900	1	0.23	227.00	7.76	0.25	150.87	
Red Wing	8	103	8.4	96.2	3	900	2	0.23	227.00	7.03	0.25	156.04	
Red Wing	8	103	8.4	96.2	3	900	2	0.22	223.00	7.95	0.25	1/0.94	152.55
Red Wing	8	103	0.4 8.4	96.2	3	900	3	0.23	230.00	7.01	0.25	147.00	152.55
Red Wing	0	103	0.4 8.4	90.2	2	900	4	0.23	220.00	7.95	0.25	155.64	153.00
Red Wing	0	103	0.4 <u>8</u> 4	96.2	2	900	J maan ² 5	0.22	224.00	7.90	0.25	152.04	155.45
Red Wing	8	103	0.4 8.4	96.2	3	900	stddov3 5	0.23	3.06	0.06	0.23	3.14	
Red Wing	0	103	0.4 Q 4	90.2	2	900	coefficer ² 5	1 25	1 25	0.00	0.00	2.14	
Keu wing	0	105	0.4	90.2	5	900	coervar5-5	1.55	1.55	0.79	0.79	2.04	

					Lig	ht Weight De	eflectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Drm	amia		Three Blow
Origin	Moisture	Danaita	Moisture	Densita	Deint	Diop	Neuchar	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Lake Falls	18	98	18.6	97.5	1	100	1						
Red Lake Falls	18	98	18.6	97.5	1	100	2	0.07	73.00	2.36	0.08	142.67	
Red Lake Falls	18	98	18.6	97.5	1	100	3	0.07	74.00	2.48	0.08	147.90	
Red Lake Falls	18	98	18.6	97.5	1	100	4	0.07	74.00	2.56	0.08	152.67	147.75
Red Lake Falls	18	98	18.6	97.5	1	100	5	0.07	73.00	2.50	0.08	151.14	150.57
Red Lake Falls	18	98	18.6	97.5	1	100	mean3-5	0.07	73.67	2.51	0.08	150.57	
Red Lake Falls	18	98	18.6	97.5	1	100	stddev3-5	0.00	0.58	0.04	0.00	2.44	
Red Lake Falls	18	98	18.6	97.5	1	100	coefvar3-5	0.78	0.78	1.66	1.66	1.62	
Red Lake Falls	18	98	18.6	97.5	2	100	1	0.09	89.00	2.36	0.08	117.02	
Red Lake Falls	18	98	18.6	97.5	2	100	2	0.09	92.00	2.35	0.07	112.73	
Red Lake Falls	18	98	18.6	97.5	2	100	3	0.09	89.00	2.34	0.07	116.03	115.26
Red Lake Falls	18	98	18.6	97.5	2	100	4	0.09	89.00	2.37	0.08	117.52	115.43
Red Lake Falls	18	98	18.6	97.5	2	100	5	0.09	88.00	2.45	0.08	122.87	118.81
Red Lake Falls	18	98	18.6	97.5	2	100	mean3-5	0.09	88.67	2.39	0.08	118.81	
Red Lake Falls	18	98	18.6	97.5	2	100	stddev3-5	0.00	0.58	0.06	0.00	3.59	
Red Lake Falls	18	98	18.6	97.5	2	100	coefvar3-5	0.65	0.65	2.38	2.38	3.03	
Red Lake Falls	18	98	18.6	97.5	3	100	1	0.12	115.00	2.28	0.07	87.50	
Red Lake Falls	18	98	18.6	97.5	3	100	2	0.12	119.00	2.36	0.08	87.52	
Red Lake Falls	18	98	18.6	97.5	3	100	3	0.12	118.00	2.37	0.08	88.64	87.89
Red Lake Falls	18	98	18.6	97.5	3	100	4	0.12	123.00	2.39	0.08	85.75	87.30
Red Lake Falls	18	98	18.6	97.5	3	100	5	0.12	121.00	2.42	0.08	88.26	87.55
Red Lake Falls	18	98	18.6	97.5	3	100	mean3-5	0.12	120.67	2.39	0.08	87.55	
Red Lake Falls	18	98	18.6	97.5	3	100	stddev3-5	0.00	2.52	0.03	0.00	1.57	
Red Lake Falls	18	98	18.6	97.5	3	100	coefvar3-5	2.09	2.09	1.05	1.05	1.79	
Red Lake Falls	18	98	18.6	97.5	1	500	1	0.19	188.00	5.17	0.16	121.36	
Red Lake Falls	18	98	18.6	97.5	1	500	2	0.19	186.00	5.22	0.17	123.85	
Red Lake Falls	18	98	18.6	97.5	1	500	3	0.19	187.00	5.24	0.17	123.66	122.96
Red Lake Falls	18	98	18.6	97.5	1	500	4	0.19	186.00	5.18	0.16	122.91	123.47
Red Lake Falls	18	98	18.6	97.5	1	500	5	0.19	188.00	5.25	0.17	123.24	123.27
Red Lake Falls	18	98	18.6	97.5	1	500	mean3-5	0.19	187.00	5.22	0.17	123.27	
Red Lake Falls	18	98	18.6	97.5	1	500	stddev3-5	0.00	1.00	0.04	0.00	0.38	
Red Lake Falls	18	98	18.6	97.5	1	500	coefvar3-5	0.53	0.53	0.72	0.72	0.31	
Red Lake Falls	18	98	18.6	97.5	2	500	1	0.23	234.00	5.38	0.17	101.47	
Red Lake Falls	18	98	18.6	97.5	2	500	2	0.24	241.00	5.50	0.18	100.72	
Red Lake Falls	18	98	18.6	97.5	2	500	3	0.24	240.00	5.51	0.18	101.32	101.17
Red Lake Falls	18	98	18.6	97.5	2	500	4	0.18	175.00	4.34	0.14	109.45	103.83
Red Lake Falls	18	98	18.6	97.5	2	500	5	0.24	240.00	5.45	0.17	100.22	103.66
Red Lake Falls	18	98	18.6	97.5	2	500	mean3-5	0.22	218.33	5.10	0.16	103.66	
Red Lake Falls	18	98	18.6	97.5	2	500	stddev3-5	0.04	37.53	0.66	0.02	5.04	
Red Lake Falls	18	98	18.6	97.5	2	500	coefvar3-5	17.19	17.19	12.92	12.92	4.86	
Red Lake Falls	18	98	18.6	97.5	3	500	1	0.33	332.00	5.30	0.17	70.45	
Red Lake Falls	18	98	18.6	97.5	3	500	2	0.33	329.00	5.34	0.17	71.63	
Red Lake Falls	18	98	18.6	97.5	3	500	3	0.34	340.00	5.35	0.17	69.44	70.51
Red Lake Falls	18	98	18.6	97.5	3	500	4	0.33	333.00	5.31	0.17	70.37	70.48
Red Lake Falls	18	98	18.6	97.5	3	500	5	0.34	342.00	5.31	0.17	68.52	69.45
Red Lake Falls	18	98	18.6	97.5	3	500	mean3-5	0.34	338.33	5.32	0.17	69.45	
Red Lake Falls	18	98	18.6	97.5	3	500	stddev3-5	0.00	4.73	0.02	0.00	0.93	
Red Lake Falls	18	98	18.6	97.5	3	500	coefvar3-5	1.40	1.40	0.43	0.43	1.33	

					Lig	ht Weight De	flectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
Origin	Moisture	Danaita	Moisture	Densita	Delint	Diop	Newshaw	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Lake Falls	18	98	18.6	97.5	1	900	1	0.42	419.00	8.16	0.26	85.95	
Red Lake Falls	18	98	18.6	97.5	1	900	2	0.43	425.00	8.09	0.26	84.01	
Red Lake Falls	18	98	18.6	97.5	1	900	3	0.45	445.00	8.21	0.26	81.42	83.79
Red Lake Falls	18	98	18.6	97.5	1	900	4	0.45	449.00	8.15	0.26	80.11	81.84
Red Lake Falls	18	98	18.6	97.5	1	900	5	0.45	453.00	8.17	0.26	79.59	80.37
Red Lake Falls	18	98	18.6	97.5	1	900	mean3-5	0.45	449.00	8.18	0.26	80.37	
Red Lake Falls	18	98	18.6	97.5	1	900	stddev3-5	0.00	4.00	0.03	0.00	0.94	
Red Lake Falls	18	98	18.6	97.5	1	900	coefvar3-5	0.89	0.89	0.37	0.37	1.17	
Red Lake Falls	18	98	18.6	97.5	2	900	1	0.43	432.00	8.08	0.26	82.54	
Red Lake Falls	18	98	18.6	97.5	2	900	2	0.45	445.00	8.10	0.26	80.33	
Red Lake Falls	18	98	18.6	97.5	2	900	3	0.46	455.00	8.02	0.26	77.79	80.22
Red Lake Falls	18	98	18.6	97.5	2	900	4	0.47	469.00	8.14	0.26	76.60	78.24
Red Lake Falls	18	98	18.6	97.5	2	900	5	0.46	464.00	8.13	0.26	77.33	77.24
Red Lake Falls	18	98	18.6	97.5	2	900	mean3-5	0.46	462.67	8.10	0.26	77.24	
Red Lake Falls	18	98	18.6	97.5	2	900	stddev3-5	0.01	7.09	0.07	0.00	0.60	
Red Lake Falls	18	98	18.6	97.5	2	900	coefvar3-5	1.53	1.53	0.82	0.82	0.78	
Red Lake Falls	18	98	18.6	97.5	3	900	1	0.67	667.00	8.47	0.27	56.04	
Red Lake Falls	18	98	18.6	97.5	3	900	2	0.69	685.00	8 49	0.27	54 70	
Red Lake Falls	18	98	18.6	97.5	3	900	3	0.70	702.00	8 48	0.27	53 31	54 68
Red Lake Falls	18	98	18.6	97.5	3	900	4	0.71	714.00	8.41	0.27	51.98	53.33
Red Lake Falls	18	98	18.6	97.5	3	900	5	0.72	720.00	8 38	0.27	51.36	52.22
Red Lake Falls	18	98	18.6	97.5	3	900	mean3-5	0.72	712.00	8.42	0.27	52.22	02.22
Red Lake Falls	18	98	18.6	97.5	3	900	stddev3-5	0.01	9.17	0.05	0.00	0.99	
Red Lake Falls	18	98	18.6	97.5	3	900	coefvar3-5	1 29	1.29	0.61	0.61	1.90	
Red Lake Falls	14	98	14.2	97.8	1	100	1	0.10	104.00	3.60	0.01	152.76	
Red Lake Falls	14	98	14.2	97.8	1	100	2	0.10	102.00	3 54	0.11	153.16	
Red Lake Falls	14	98	14.2	97.8	1	100	3	0.11	102.00	3.63	0.12	152.57	152.83
Red Lake Falls	14	98	14.2	97.8	1	100	4	0.10	103.00	3.69	0.12	152.57	154.61
Red Lake Falls	14	98	14.2	97.8	1	100	5	0.10	103.00	3.62	0.12	155.10	155.26
Red Lake Falls	14	98	14.2	97.8	1	100	mean3-5	0.10	103.67	3.65	0.12	155.26	155.20
Red Lake Falls	14	98	14.2	97.8	1	100	stddev3-5	0.00	1 15	0.04	0.00	2 77	
Red Lake Falls	14	98	14.2	97.8	1	100	coefvar3-5	1 11	1.15	1.04	1.04	1.78	
Red Lake Falls	14	98	14.2	97.8	2	100	1	0.12	124.00	3.68	0.12	130.97	
Red Lake Falls	14	98	14.2	97.8	2	100	2	0.12	109.00	3 50	0.12	141 71	
Red Lake Falls	14	98	14.2	97.8	2	100	3	0.11	109.00	3 44	0.11	139.28	137.32
Red Lake Falls	14	98	14.2	97.8	2	100	4	0.11	109.00	3.43	0.11	140.16	140.38
Red Lake Falls	14	98	14.2	97.8	2	100	5	0.11	111.00	3.45	0.11	137.17	138.87
Red Lake Falls	14	98	14.2	97.8	2	100	mean3-5	0.11	109.33	3.44	0.11	138.87	150.07
Red Lake Falls	14	98	14.2	97.8	2	100	stddev3-5	0.00	1 53	0.01	0.00	1 54	
Red Lake Falls	14	98	14.2	97.8	2	100	coefvar3 5	1.40	1.35	0.01	0.00	1.54	
Red Lake Falls	14	90	14.2	97.8	2	100	1	0.16	157.00	4.08	0.29	11/ 60	
Red Lake Falls	14	98	14.2	97.8	3	100	2	0.10	116.00	4.00	0.13	155.98	
Red Lake Falls	14	90	14.2	97.8	3	100	2	0.12	118.00	4.10	0.13	153.30	141.34
Red Lake Falls	14	90	14.2	97.0	3	100	3	0.12	110.00	4.10	0.13	150.04	153 42
Red Lake Falls	14	90	14.2	97.0	3	100	-+	0.12	117.00	4.07	0.13	151.62	151.42
Red Lake Falls	14	90	14.2	97.0	2	100	J maan2 5	0.12	112.00	4.02	0.13	151.05	151.97
Red Lake Falls	14	90	14.2	97.0	3	100	stddev2 5	0.12	1 00	-+.00 0.04	0.15	1 24	
Red Lake Falls	14	98	14.2	97.8	3	100	coefvar3 5	0.00	0.85	0.04	0.00	0.81	
ICCU Lake Falls	14	90	14.2	91.0	5	100	cocivar5-5	0.05	0.65	0.77	0.77	0.01	

					Lig	ht Weight De	eflectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
Origin	Moisture	Danaita	Moisture	Densita	Deint	Diop	Needback	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Lake Falls	14	98	14.2	97.8	1	500	1	0.17	171.00	5.25	0.17	135.49	
Red Lake Falls	14	98	14.2	97.8	1	500	2	0.16	155.00	4.98	0.16	141.79	
Red Lake Falls	14	98	14.2	97.8	1	500	3	0.16	159.00	5.03	0.16	139.61	138.97
Red Lake Falls	14	98	14.2	97.8	1	500	4	0.16	156.00	4.96	0.16	140.32	140.57
Red Lake Falls	14	98	14.2	97.8	1	500	5	0.16	158.00	5.02	0.16	140.22	140.05
Red Lake Falls	14	98	14.2	97.8	1	500	mean3-5	0.16	157.67	5.00	0.16	140.05	
Red Lake Falls	14	98	14.2	97.8	1	500	stddev3-5	0.00	1.53	0.04	0.00	0.38	
Red Lake Falls	14	98	14.2	97.8	1	500	coefvar3-5	0.97	0.97	0.76	0.76	0.27	
Red Lake Falls	14	98	14.2	97.8	2	500	1	0.24	236.00	6.16	0.20	115.19	
Red Lake Falls	14	98	14.2	97.8	2	500	2	0.23	230.00	6.10	0.19	117.05	
Red Lake Falls	14	98	14.2	97.8	2	500	3	0.23	232.00	6.16	0.20	117.18	116.47
Red Lake Falls	14	98	14.2	97.8	2	500	4	0.24	235.00	6.22	0.20	116.81	117.01
Red Lake Falls	14	98	14.2	97.8	2	500	5	0.23	234.00	6.28	0.20	118.44	117.48
Red Lake Falls	14	98	14.2	97.8	2	500	mean3-5	0.23	233.67	6.22	0.20	117.48	
Red Lake Falls	14	98	14.2	97.8	2	500	stddev3-5	0.00	1.53	0.06	0.00	0.86	
Red Lake Falls	14	98	14.2	97.8	2	500	coefvar3-5	0.65	0.65	0.96	0.96	0.73	
Red Lake Falls	14	98	14.2	97.8	3	500	1	0.20	198.00	5.96	0.19	132.84	
Red Lake Falls	14	98	14.2	97.8	3	500	2	0.20	203.00	6.06	0.19	131.74	
Red Lake Falls	14	98	14.2	97.8	3	500	3	0.20	203.00	6.01	0.19	130.66	131 75
Red Lake Falls	14	98	14.2	97.8	3	500	4	0.20	203.00	6.11	0.19	132.83	131.76
Red Lake Falls	14	98	14.2	97.8	3	500	5	0.20	203.00	6.00	0.19	131.74	131.74
Red Lake Falls	14	98	14.2	97.8	3	500	mean3-5	0.20	202.33	6.04	0.19	131.74	151.71
Red Lake Falls	14	98	14.2	97.8	3	500	stddev3-5	0.00	1.15	0.06	0.00	1.09	
Red Lake Falls	14	98	14.2	97.8	3	500	coefvar3-5	0.57	0.57	1.01	1.01	0.83	
Red Lake Falls	14	98	14.2	97.8	1	900	1	0.37	323.00	8.09	0.26	110.54	
Red Lake Falls	14	98	14.2	97.8	1	900	2	0.32	323.00	8.10	0.26	110.54	
Red Lake Falls	14	98	14.2	97.8	1	900	2	0.32	323.00	8.06	0.26	110.07	110.44
Red Lake Falls	14	98	14.2	97.8	1	900	3	0.32	329.00	8.00	0.20	100.73	110.44
Red Lake Falls	14	08	14.2	07.8	1	900	5	0.35	347.00	8 20	0.26	105.73	108.43
Red Lake Falls	14	98	14.2	97.8	1	900	mean3 5	0.33	333.00	8.18	0.20	108.43	108.45
Red Lake Falls	14	98	14.2	97.8	1	900	stddev3 5	0.01	12.49	0.13	0.20	2.60	
Red Lake Falls	14	98	14.2	97.8	1	900	coefuar3 5	3 75	3 75	1.41	1.41	2.00	
Red Lake Falls	14	98	14.2	97.8	2	900	1	0.40	404.00	8.80	0.28	96.13	
Red Lake Falls	14	08	14.2	07.8	2	900	2	0.40	305.00	0.00	0.20	101.00	
Red Lake Falls	14	98	14.2	97.8	2	900	3	0.40	402.00	8.97	0.29	98.47	98.53
Red Lake Falls	14	98	14.2	97.8	2	900	4	0.40	402.00	8.88	0.29	97.73	99.07
Red Lake Falls	14	98	14.2	97.8	2	900	-+	0.40	392.00	8.88	0.28	00.07	99.07
Red Lake Falls	14	98	14.2	97.8	2	900	mean3 5	0.39	392.00	8.00	0.28	08 73	90.75
Red Lake Falls	14	98	14.2	97.8	2	900	atdday2 5	0.40	5 5 1	0.05	0.28	96.75 1.14	
Red Lake Falls	14	98	14.2	97.8	2	900	studev3-5	1.28	1.39	0.03	0.00	1.14	
Red Lake Falls	14	90	14.2	97.8	2	900	1	0.26	1.30	0.38	0.38	1.10	
Red Lake Falls	14	98	14.2	97.8	2	900	1	0.30	303.00	8./J	0.28	100.38	
Red Lake Falls	14	98	14.2	97.8	2	900	2	0.38	375.00	0./8	0.28	103.33	102.49
Red Lake Falls	14	98	14.2	97.8	2	900	3	0.38	375.00	8.30	0.27	100.74	103.48
Red Lake Falls	14	98	14.2	97.8	3	900	4	0.38	375.00	8.74	0.28	102.86	102.31
Red Lake Falls	14	98	14.2	97.8	3	900	5	0.39	386.00	8.85	0.28	101.18	101.59
Red Lake Falls	14	98	14.2	97.8	3	900	mean3-5	0.38	5/8.0/	ð./2	0.28	101.59	
Red Lake Falls	14	98	14.2	97.8	3	900	stadev3-5	0.01	6.35	0.15	0.00	1.12	
Red Lake Falls	14	98	14.2	97.8	3	900	coetvar3-5	1.68	1.68	1.68	1.68	1.10	

					Lig	ht Weight De	flectometer						
Soil	Target	Torgot	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
Origin	Moisture	Densita	Moisture	Densita	Delint	Diop	Needback	Defle	ection	Dyn	annic	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Lake Falls	11	98	10.7	90.5	1	100	1						
Red Lake Falls	11	98	10.7	90.5	1	100	2						
Red Lake Falls	11	98	10.7	90.5	1	100	3						
Red Lake Falls	11	98	10.7	90.5	1	100	4						
Red Lake Falls	11	98	10.7	90.5	1	100	5						
Red Lake Falls	11	98	10.7	90.5	1	100	mean3-5						
Red Lake Falls	11	98	10.7	90.5	1	100	stddev3-5						
Red Lake Falls	11	98	10.7	90.5	1	100	coefvar3-5						
Red Lake Falls	11	98	10.7	90.5	2	100	1						
Red Lake Falls	11	98	10.7	90.5	2	100	2						
Red Lake Falls	11	98	10.7	90.5	2	100	3						
Red Lake Falls	11	98	10.7	90.5	2	100	4						
Red Lake Falls	11	98	10.7	90.5	2	100	5						
Red Lake Falls	11	98	10.7	90.5	2	100	mean3-5						
Red Lake Falls	11	98	10.7	90.5	2	100	stddev3-5						
Red Lake Falls	11	98	10.7	90.5	2	100	coefvar3-5						
Red Lake Falls	16	103	16.3	99.4	1	100	1	0.06	58.00	2.88	0.09	219.14	
Red Lake Falls	16	103	16.3	99.4	1	100	2	0.06	58.00	2.84	0.09	216.09	
Red Lake Falls	16	103	16.3	99.4	1	100	3	0.06	59.00	2.92	0.09	218.42	217.88
Red Lake Falls	16	103	16.3	99.4	1	100	4	0.06	58.00	2.88	0.09	219.14	217.88
Red Lake Falls	16	103	16.3	99.4	1	100	5	0.06	57.00	2.83	0.09	219.11	218.89
Red Lake Falls	16	103	16.3	99.4	1	100	mean3-5	0.06	58.00	2.88	0.09	218.89	
Red Lake Falls	16	103	16.3	99.4	1	100	stddev3-5	0.00	1.00	0.05	0.00	0.41	
Red Lake Falls	16	103	16.3	99.4	1	100	coefvar3-5	1.72	1.72	1.57	1.57	0.19	
Red Lake Falls	16	103	16.3	99.4	2	100	1	0.06	62.00	2.25	0.07	160.16	
Red Lake Falls	16	103	16.3	99.4	2	100	2	0.06	64.00	2.24	0.07	154.46	
Red Lake Falls	16	103	16.3	99.4	2	100	3	0.06	60.00	2.31	0.07	169.91	161.51
Red Lake Falls	16	103	16.3	99.4	2	100	4	0.06	63.00	2.34	0.07	163.92	162.76
Red Lake Falls	16	103	16.3	99.4	2	100	5	0.06	62.00	2.28	0.07	162.29	165.37
Red Lake Falls	16	103	16.3	99.4	2	100	mean3-5	0.06	61.67	2.31	0.07	165.37	
Red Lake Falls	16	103	16.3	99.4	2	100	stddev3-5	0.00	1.53	0.03	0.00	4.01	
Red Lake Falls	16	103	16.3	99.4	2	100	coefvar3-5	2.48	2.48	1.30	1.30	2.43	
Red Lake Falls	16	103	16.3	99.4	3	100	1	0.07	72.00	2.54	0.08	155.69	
Red Lake Falls	16	103	16.3	99.4	3	100	2	0.07	70.00	2.49	0.08	156.98	
Red Lake Falls	16	103	16.3	99.4	3	100	3	0.07	69.00	2.56	0.08	163.74	158.80
Red Lake Falls	16	103	16.3	99.4	3	100	4	0.07	70.00	2.57	0.08	162.03	160.92
Red Lake Falls	16	103	16.3	99.4	3	100	5	0.07	67.00	2.51	0.08	165.33	163.70
Red Lake Falls	16	103	16.3	99.4	3	100	mean3-5	0.07	68.67	2.55	0.08	163.70	
Red Lake Falls	16	103	16.3	99.4	3	100	stddev3-5	0.00	1.53	0.03	0.00	1.65	
Red Lake Falls	16	103	16.3	99.4	3	100	coefvar3-5	2.22	2.22	1.26	1.26	1.01	

					Lig	ht Weight De	eflectometer						
Soil	Target	Torgot	Actual	Actual	Test	Dron	Dron			Drm	amia		Three Blow
Origin	Moisture	Density	Moisture	Danaity	Doint	Height	Number	Defl	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	INUITIDEI			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Lake Falls	16	103	16.3	99.4	1	500	1	0.12	116.00	5.39	0.17	205.06	
Red Lake Falls	16	103	16.3	99.4	1	500	2	0.12	117.00	5.40	0.17	203.69	
Red Lake Falls	16	103	16.3	99.4	1	500	3	0.12	119.00	5.39	0.17	199.89	202.88
Red Lake Falls	16	103	16.3	99.4	1	500	4	0.12	117.00	5.40	0.17	203.69	202.42
Red Lake Falls	16	103	16.3	99.4	1	500	5	0.12	117.00	5.43	0.17	204.82	202.80
Red Lake Falls	16	103	16.3	99.4	1	500	mean3-5	0.12	117.67	5.41	0.17	202.80	
Red Lake Falls	16	103	16.3	99.4	1	500	stddev3-5	0.00	1.15	0.02	0.00	2.58	
Red Lake Falls	16	103	16.3	99.4	1	500	coefvar3-5	0.98	0.98	0.39	0.39	1.27	
Red Lake Falls	16	103	16.3	99.4	2	500	1	0.15	147.00	5.24	0.17	157.31	
Red Lake Falls	16	103	16.3	99.4	2	500	2	0.16	156.00	5.34	0.17	151.07	
Red Lake Falls	16	103	16.3	99.4	2	500	3	0.15	151.00	5.35	0.17	156.36	154.91
Red Lake Falls	16	103	16.3	99.4	2	500	4	0.15	150.00	5.24	0.17	154.17	153.87
Red Lake Falls	16	103	16.3	99.4	2	500	5	0.15	146.00	5.24	0.17	158.39	156.31
Red Lake Falls	16	103	16.3	99.4	2	500	mean3-5	0.15	149.00	5.28	0.17	156.31	
Red Lake Falls	16	103	16.3	99.4	2	500	stddev3-5	0.00	2.65	0.06	0.00	2.11	
Red Lake Falls	16	103	16.3	99.4	2	500	coefvar3-5	1.78	1.78	1.20	1.20	1.35	
Red Lake Falls	16	103	16.3	99.4	3	500	1	0.16	163.00	5.41	0.17	146.48	
Red Lake Falls	16	103	16.3	99.4	3	500	2	0.16	163.00	5.43	0.17	147.02	
Red Lake Falls	16	103	16.3	99.4	3	500	3	0.16	162.00	5.52	0.18	150.38	147 96
Red Lake Falls	16	103	16.3	99.4	3	500	4	0.16	164.00	5.42	0.17	145.85	147.75
Red Lake Falls	16	103	16.3	99.4	3	500	5	0.17	165.00	5.53	0.18	147.91	148.05
Red Lake Falls	16	103	16.3	99.4	3	500	mean3-5	0.16	163.67	5.49	0.17	148.05	110.00
Red Lake Falls	16	103	16.3	99.4	3	500	stddev3-5	0.00	1 53	0.06	0.00	2.27	
Red Lake Falls	16	103	16.3	99.4	3	500	coefvar3-5	0.93	0.93	1 11	1 11	1.53	
Red Lake Falls	16	103	16.3	99.4	1	900	1	0.20	196.00	8.09	0.26	182.16	
Red Lake Falls	16	103	16.3	99.4	1	900	2	0.20	198.00	8.16	0.26	181.88	
Red Lake Falls	16	103	16.3	99.4	1	900	3	0.20	198.00	8.22	0.26	183.21	182.42
Red Lake Falls	16	103	16.3	99.4	1	900	4	0.20	202.00	8.17	0.26	178.49	181.20
Red Lake Falls	16	103	16.3	99.4	1	900	5	0.20	202.00	8.18	0.26	180.50	180.74
Red Lake Falls	16	103	16.3	99.4	1	900	mean3-5	0.20	200.00	8 19	0.26	180.30	100.74
Red Lake Falls	16	103	16.3	00.4	1	900	stddev3 5	0.00	200.00	0.03	0.00	2 37	
Red Lake Falls	16	103	16.3	99.4	1	900	coefuar3 5	1.00	2.00	0.03	0.00	1.31	
Red Lake Falls	16	103	16.3	99.4	2	900	1	0.26	256.00	8.08	0.32	139.29	
Red Lake Falls	16	103	16.3	99.4	2	900	2	0.20	257.00	8.02	0.20	137.72	
Red Lake Falls	16	103	16.3	00.4	2	900	3	0.20	259.00	8.02	0.20	137.72	138.40
Red Lake Falls	16	103	16.2	00.4	2	900	3	0.20	257.00	0.11 0.11	0.20	120.27	128 20
Red Lake Falls	10	103	16.3	99.4	2	900	4	0.20	257.00	0.11 8.14	0.20	139.27	138.39
Red Lake Falls	10	103	16.3	99.4	2	900	J maan ² 5	0.20	203.00	8.14	0.20	130.39	136.02
Red Lake Falls	10	103	16.3	99.4	2	900	atdday2 5	0.20	239.07	0.02	0.20	138.02	
Red Lake Falls	10	103	16.3	99.4	2	900	studev3-3	0.00	5.00	0.02	0.00	1.55	
Red Lake Falls	10	103	16.3	99.4	2	900	coervar3-5	1.18	1.18	0.21	0.21	128.00	
Red Lake Falls	10	103	16.5	99.4	3	900	1	0.20	258.00	8.12	0.20	138.90	
Red Lake Falls	10	103	16.5	99.4	3	900	2	0.20	203.00	8.24	0.20	138.27	120.74
Red Lake Falls	16	103	16.3	99.4	3	900	3	0.26	259.00	8.10	0.26	139.04	138.74
Red Lake Falls	16	103	16.3	99.4	3	900	4	0.27	268.00	8.30	0.26	136.68	138.00
Red Lake Falls	16	103	16.3	99.4	3	900	5	0.26	264.00	8.17	0.26	136.58	137.43
Red Lake Falls	16	103	16.3	99.4	3	900	mean3-5	0.26	263.67	8.21	0.26	137.43	
Red Lake Falls	16	103	16.3	99.4	3	900	stddev3-5	0.00	4.51	0.08	0.00	1.40	
Red Lake Falls	16	103	16.3	99.4	3	900	coefvar3-5	1.71	1.71	0.95	0.95	1.02	

					Lig	ht Weight De	flectometer						
Soil	Target	Torget	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
Origin	Moisture	Densite	Moisture	Densita	Delint	Diop	Newshaw	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Lake Falls	13	103	13.3	102.9	1	100	1	0.04	37.00	2.72	0.09	324.43	
Red Lake Falls	13	103	13.3	102.9	1	100	2	0.04	38.00	2.74	0.09	318.22	
Red Lake Falls	13	103	13.3	102.9	1	100	3	0.04	37.00	2.75	0.09	328.01	323.55
Red Lake Falls	13	103	13.3	102.9	1	100	4	0.04	38.00	2.70	0.09	313.57	319.93
Red Lake Falls	13	103	13.3	102.9	1	100	5	0.04	39.00	2.72	0.09	307.79	316.46
Red Lake Falls	13	103	13.3	102.9	1	100	mean3-5	0.04	38.00	2.72	0.09	316.46	
Red Lake Falls	13	103	13.3	102.9	1	100	stddev3-5	0.00	1.00	0.03	0.00	10.41	
Red Lake Falls	13	103	13.3	102.9	1	100	coefvar3-5	2.63	2.63	0.92	0.92	3.29	
Red Lake Falls	13	103	13.3	102.9	2	100	1	0.04	41.00	2.66	0.08	286.32	
Red Lake Falls	13	103	13.3	102.9	2	100	2	0.04	44.00	2.72	0.09	272.82	
Red Lake Falls	13	103	13.3	102.9	2	100	3	0.04	44.00	2.81	0.09	281.84	280.33
Red Lake Falls	13	103	13.3	102.9	2	100	4	0.04	43.00	2.82	0.09	289.42	281.36
Red Lake Falls	13	103	13.3	102.9	2	100	5	0.05	45.00	2.82	0.09	276.56	282.61
Red Lake Falls	13	103	13.3	102.9	2	100	mean3-5	0.04	44.00	2.82	0.09	282.61	
Red Lake Falls	13	103	13.3	102.9	2	100	stddev3-5	0.00	1.00	0.01	0.00	6.47	
Red Lake Falls	13	103	13.3	102.9	2	100	coefvar3-5	2 27	2 27	0.20	0.20	2 29	
Red Lake Falls	13	103	13.3	102.9	3	100	1	0.04	38.00	2.57	0.08	298.47	
Red Lake Falls	13	103	13.3	102.9	3	100	2	0.04	36.00	2.67	0.08	321.18	
Red Lake Falls	13	103	13.3	102.9	3	100	3	0.03	28.00	2.02	0.00	335.72	318.46
Red Lake Falls	13	103	13.3	102.9	3	100	4	0.03	25.00	1.73	0.07	305.39	320.77
Red Lake Falls	13	103	13.3	102.9	3	100	5	0.05	38.00	2.66	0.00	308.92	316.68
Red Lake Falls	13	103	13.3	102.9	3	100	mean3 5	0.04	30.33	2.00	0.03	316.68	510.00
Red Lake Falls	13	103	13.3	102.9	3	100	stddav3 5	0.03	6.81	0.47	0.07	16.58	
Red Lake Falls	13	103	13.3	102.9	3	100	coefvar3 5	22.44	22.44	21.47	21.47	5.24	
Red Lake Falls	13	103	13.3	102.9	1	500	1	0.07	73.00	5.47	0.17	330.69	
Red Lake Falls	13	103	13.3	102.9	1	500	2	0.07	73.00	5.47	0.17	335.80	
Red Lake Falls	13	103	13.3	102.9	1	500	3	0.07	72.00	5.55	0.17	335.52	334.04
Red Lake Falls	13	103	13.3	102.9	1	500	3	0.07	73.00	5.55	0.18	333.71	335.04
Red Lake Falls	13	103	13.3	102.9	1	500	-+	0.07	71.00	5.52	0.18	3/3 73	337.66
Red Lake Falls	13	103	13.3	102.9	1	500	mean3 5	0.07	72.33	5.53	0.18	337.66	337.00
Red Lake Falls	13	103	13.3	102.9	1	500	stddav3 5	0.07	1 15	0.02	0.18	5 34	
Red Lake Falls	13	103	13.3	102.9	1	500	coefvar3 5	1.60	1.15	0.02	0.00	1.58	
Red Lake Falls	13	103	13.3	102.9	2	500	1	0.08	77.00	5.04	0.28	288.86	
Red Lake Falls	13	103	12.2	102.9	2	500	2	0.08	76.00	5.04	0.16	200.00	
Red Lake Falls	13	103	13.3	102.9	2	500	2	0.08	75.00	5.02	0.16	291.50	292.31
Red Lake Falls	13	103	13.3	102.9	2	500	3	0.08	78.00	5.16	0.10	290.37	292.31
Red Lake Falls	13	103	13.3	102.9	2	500		0.08	77.00	5.08	0.10	291.95	293.34
Red Lake Falls	13	103	13.3	102.9	2	500	mean3 5	0.08	76.67	5.08	0.16	291.10	295.25
Red Lake Falls	13	103	13.5	102.9	2	500	stdday2 5	0.08	1.52	0.06	0.10	293.23	
Red Lake Falls	13	103	13.5	102.9	2	500	studev3-3	1.00	1.33	0.00	0.00	2.92	
Red Lake Falls	13	103	13.3	102.9	2	500	coervar3-5	1.99	1.99	5.20	0.17	228.00	
Red Lake Falls	13	103	13.3	102.9	2	500	1	0.07	71.00	5.30	0.17	222.84	
Red Lake Falls	13	103	13.3	102.9	2	500	2	0.07	71.00	5.21	0.17	323.84	220 60
Red Lake Falls	13	103	13.3	102.9	2	500	3	0.07	71.00	5.20	0.17	323.22	328.08
Red Lake Falls	13	103	13.5	102.9	3	500	4	0.07	/1.00	5.23	0.17	323.09	324.05
Red Lake Falls	13	103	13.5	102.9	3	500	5	0.06	63.00	5.32	0.17	3/2.6/	340.33
Red Lake Falls	13	103	13.5	102.9	3	500	mean3-5	0.07	08.33	3.25	0.1/	340.55	
Red Lake Falls	13	103	13.3	102.9	3	500	stadev3-5	0.00	4.62	0.06	0.00	28.03	
Red Lake Falls	13	103	13.3	102.9	3	500	coetvar3-5	6.76	6.76	1.19	1.19	8.24	

					Lig	ht Weight De	flectometer						
Soil	Target	Target	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
Origin	Moisture	Danaita	Moisture	Densita	Delint	Diop	Newshaw	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	Number			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Lake Falls	13	103	13.3	102.9	1	900	1	0.11	113.00	8.39	0.27	327.67	
Red Lake Falls	13	103	13.3	102.9	1	900	2	0.11	111.00	8.39	0.27	333.57	
Red Lake Falls	13	103	13.3	102.9	1	900	3	0.11	111.00	8.49	0.27	337.55	332.93
Red Lake Falls	13	103	13.3	102.9	1	900	4	0.11	111.00	8.52	0.27	338.74	336.62
Red Lake Falls	13	103	13.3	102.9	1	900	5	0.12	120.00	8.50	0.27	312.60	329.63
Red Lake Falls	13	103	13.3	102.9	1	900	mean3-5	0.11	114.00	8.50	0.27	329.63	
Red Lake Falls	13	103	13.3	102.9	1	900	stddev3-5	0.01	5.20	0.02	0.00	14.76	
Red Lake Falls	13	103	13.3	102.9	1	900	coefvar3-5	4.56	4.56	0.18	0.18	4.48	
Red Lake Falls	13	103	13.3	102.9	2	900	1	0.13	127.00	8.09	0.26	281.12	
Red Lake Falls	13	103	13.3	102.9	2	900	2	0.13	132.00	8.29	0.26	277.16	
Red Lake Falls	13	103	13.3	102.9	2	900	3	0.13	131.00	8.24	0.26	277.59	278.63
Red Lake Falls	13	103	13.3	102.9	2	900	4	0.13	130.00	8.34	0.27	283.12	279.29
Red Lake Falls	13	103	13.3	102.9	2	900	5	0.13	129.00	8.15	0.26	278.82	279.85
Red Lake Falls	13	103	13.3	102.9	2	900	mean3-5	0.13	130.00	8.24	0.26	279.85	
Red Lake Falls	13	103	13.3	102.9	2	900	stddev3-5	0.00	1.00	0.10	0.00	2.90	
Red Lake Falls	13	103	13.3	102.9	2	900	coefvar3-5	0.77	0.77	1.15	1.15	1.04	
Red Lake Falls	13	103	13.3	102.9	3	900	1	0.11	107.00	8.67	0.28	357.59	
Red Lake Falls	13	103	13.3	102.9	3	900	2	0.11	105.00	8.67	0.28	364.40	
Red Lake Falls	13	103	13.3	102.9	3	900	3	0.17	168.00	8.67	0.28	227.75	316.58
Red Lake Falls	13	103	13.3	102.9	3	900	4	0.10	102.00	8.66	0.28	374.69	322.28
Red Lake Falls	13	103	13.3	102.9	3	900	5	0.11	105.00	8.77	0.28	368.61	323.68
Red Lake Falls	13	103	13.3	102.9	3	900	mean3-5	0.13	125.00	8.70	0.28	323.68	
Red Lake Falls	13	103	13.3	102.9	3	900	stddev3-5	0.04	37.27	0.06	0.00	83.13	
Red Lake Falls	13	103	13.3	102.9	3	900	coefvar3-5	29.82	29.82	0.70	0.70	25.68	
Red Lake Falls	11	103	10.6	100.9	1	100	1	0.03	25.00	1.70	0.05	300.10	
Red Lake Falls	11	103	10.6	100.9	1	100	2	0.02	24.00	1.74	0.06	319.96	
Red Lake Falls	11	103	10.6	100.9	1	100	3	0.02	23.00	1.75	0.06	335.79	318.61
Red Lake Falls	11	103	10.6	100.9	1	100	4	0.02	24.00	1.74	0.06	319.96	325.23
Red Lake Falls	11	103	10.6	100.9	1	100	5	0.02	23.00	1.74	0.06	333.87	329.87
Red Lake Falls	11	103	10.6	100.9	1	100	mean3-5	0.02	23.33	1.74	0.06	329.87	
Red Lake Falls	11	103	10.6	100.9	1	100	stddev3-5	0.00	0.58	0.01	0.00	8.64	
Red Lake Falls	11	103	10.6	100.9	1	100	coefvar3-5	2.47	2.47	0.33	0.33	2.62	
Red Lake Falls	11	103	10.6	100.9	2	100	1	0.03	30.00	2.08	0.07	305.98	
Red Lake Falls	11	103	10.6	100.9	2	100	2	0.03	31.00	2.10	0.07	298.96	
Red Lake Falls	11	103	10.6	100.9	2	100	3	0.03	31.00	2.09	0.07	297.54	300.83
Red Lake Falls	11	103	10.6	100.9	2	100	4	0.03	25.00	1.63	0.05	287.74	294.75
Red Lake Falls	11	103	10.6	100.9	2	100	5	0.03	31.00	2.12	0.07	301.81	295.69
Red Lake Falls	11	103	10.6	100.9	2	100	mean3-5	0.03	29.00	1.95	0.06	295.69	2/0.0/
Red Lake Falls	11	103	10.6	100.9	2	100	stddev3-5	0.00	3 46	0.27	0.01	7.21	
Red Lake Falls	11	103	10.6	100.9	2	100	coefvar3-5	11.95	11.95	14 11	14 11	2.44	
Red Lake Falls	11	103	10.6	100.9	3	100	1	0.03	29.00	2.18	0.07	331 75	
Red Lake Falls	11	103	10.6	100.9	3	100	2	0.03	33.00	2.26	0.07	302.24	
Red Lake Falls	11	103	10.6	100.9	3	100	3	0.03	31.00	2.26	0.07	321.74	318 58
Red Lake Falls	11	103	10.6	100.9	3	100	4	0.03	32.00	2.20	0.07	317.20	313 72
Red Lake Falls	11	103	10.6	100.9	3	100	5	0.03	31.00	2.30	0.07	321.74	320.22
Red Lake Falls	11	103	10.6	100.9	3	100	mean3-5	0.03	31.33	2.20	0.07	320.22	520.22
Red Lake Falls	11	103	10.6	100.9	3	100	stddev3-5	0.00	0.58	0.02	0.00	2 62	
Red Lake Falls	11	103	10.6	100.9	3	100	coefvar3-5	1.84	1.84	1.02	1.02	0.82	

					Lig	ht Weight De	eflectometer						
Soil	Target	Torget	Actual	Actual	Test	Dron	Dron			Drm	omio		Three Blow
Origin	Moisture	Density	Moisture	Danaity	Doint	Height	Number	Defle	ection	Dyn	anne	Modulus	Average
Origin	Content	Density	Content	Density	Point	Height	INUITIDEI			Load	Stress		Modulus
	[%]	[%]	[%]	[%]		[mm]		[mm]	[µm]	[kN]	[MPa]	[MPa]	[MPa]
Red Lake Falls	11	103	10.6	100.9	1	500	1	0.07	69.00	5.31	0.17	339.63	
Red Lake Falls	11	103	10.6	100.9	1	500	2	0.07	70.00	5.45	0.17	343.60	
Red Lake Falls	11	103	10.6	100.9	1	500	3	0.07	69.00	5.39	0.17	344.74	342.66
Red Lake Falls	11	103	10.6	100.9	1	500	4	0.07	67.00	5.27	0.17	347.13	345.16
Red Lake Falls	11	103	10.6	100.9	1	500	5	0.07	67.00	5.39	0.17	355.03	348.97
Red Lake Falls	11	103	10.6	100.9	1	500	mean3-5	0.07	67.67	5.35	0.17	348.97	
Red Lake Falls	11	103	10.6	100.9	1	500	stddev3-5	0.00	1.15	0.07	0.00	5.39	
Red Lake Falls	11	103	10.6	100.9	1	500	coefvar3-5	1.71	1.71	1.29	1.29	1.54	
Red Lake Falls	11	103	10.6	100.9	2	500	1	0.08	75.00	5.35	0.17	314.81	
Red Lake Falls	11	103	10.6	100.9	2	500	2	0.08	76.00	5.34	0.17	310.09	
Red Lake Falls	11	103	10.6	100.9	2	500	3	0.08	75.00	5.44	0.17	320.10	315.00
Red Lake Falls	11	103	10.6	100.9	2	500	4	0.07	73.00	5.38	0.17	325.25	318.48
Red Lake Falls	11	103	10.6	100.9	2	500	5	0.08	78.00	5.56	0.18	314.58	319.98
Red Lake Falls	11	103	10.6	100.9	2	500	mean3-5	0.08	75.33	5.46	0.17	319.98	
Red Lake Falls	11	103	10.6	100.9	2	500	stddev3-5	0.00	2.52	0.09	0.00	5.33	
Red Lake Falls	11	103	10.6	100.9	2	500	coefvar3-5	3.34	3.34	1.68	1.68	1.67	
Red Lake Falls	11	103	10.6	100.9	3	500	1	0.07	67.00	5.19	0.17	341.86	
Red Lake Falls	11	103	10.6	100.9	3	500	2	0.07	65.00	5.24	0.17	355.77	
Red Lake Falls	11	103	10.6	100.9	3	500	3	0.07	66.00	5.20	0.17	347.71	348.45
Red Lake Falls	11	103	10.6	100.9	3	500	4	0.07	68.00	5.19	0.17	336.83	346.77
Red Lake Falls	11	103	10.6	100.9	3	500	5	0.07	66.00	5.21	0.17	348.38	344 30
Red Lake Falls	11	103	10.6	100.9	3	500	mean3-5	0.07	66.67	5.20	0.17	344 30	511.50
Red Lake Falls	11	103	10.6	100.9	3	500	stddev3-5	0.00	1 15	0.01	0.00	6 48	
Red Lake Falls	11	103	10.6	100.9	3	500	coefvar3-5	1 73	1.73	0.19	0.19	1.88	
Red Lake Falls	11	103	10.6	100.9	1	900	1	0.11	111.00	8.47	0.27	336.76	
Red Lake Falls	11	103	10.6	100.9	1	900	2	0.11	112.00	8.64	0.28	340.45	
Red Lake Falls	11	103	10.6	100.9	1	900	3	0.11	108.00	8 48	0.20	346.52	341.24
Red Lake Falls	11	103	10.6	100.9	1	900	4	0.11	114 00	8.60	0.27	332.93	339.96
Red Lake Falls	11	103	10.6	100.9	1	900	5	0.11	111.00	8.66	0.28	344 31	341.25
Red Lake Falls	11	103	10.6	100.9	1	900	mean3-5	0.11	111.00	8.58	0.23	341.25	541.25
Red Lake Falls	11	103	10.6	100.9	1	900	stddev3-5	0.00	3.00	0.09	0.00	7 29	
Red Lake Falls	11	103	10.6	100.9	1	900	coefyar3-5	2 70	2.70	1.07	1.07	2.14	
Red Lake Falls	11	103	10.6	100.9	2	900	1	0.13	129.00	8.83	0.28	302.08	
Red Lake Falls	11	103	10.6	100.9	2	900	2	0.09	90.00	6.33	0.20	310.40	
Red Lake Falls	11	103	10.0	100.9	2	900	3	0.09	129.00	8 90	0.20	304.48	305.65
Red Lake Falls	11	103	10.6	100.9	2	900	4	0.13	129.00	8.90	0.28	304.48	306.34
Red Lake Falls	11	103	10.6	100.9	2	900		0.13	129.00	8.87	0.28	305.82	304.81
Red Lake Falls	11	103	10.6	100.9	2	900	mean3 5	0.13	128.00	8.80	0.28	304.81	504.01
Red Lake Falls	11	103	10.0	100.9	2	900	atdday2 5	0.15	0.58	0.02	0.28	0.80	
Red Lake Falls	11	103	10.0	100.9	2	900	studev3-5	0.00	0.38	0.02	0.00	0.89	
Red Lake Falls	11	103	10.0	100.9	2	900	1	0.45	0.43	0.17 8.61	0.17	227.57	
Red Lake Falls	11	103	10.0	100.9	2	900	1	0.12	116.00	0.01	0.27	227.57	
Red Lake Falls	11	103	10.6	100.9	2	900	2	0.12	110.00	0.01	0.27	327.57	226.54
Red Lake Falls	11	103	10.6	100.9	2	900	3	0.12	117.00	8.73	0.28	324.50	320.34
Red Lake Falls	11	103	10.6	100.9	3	900	4	0.12	117.00	8.59	0.27	324.01	323.30
Red Lake Falls	11	103	10.6	100.9	3	900	5	0.12	115.00	8.52	0.27	326.96	325.16
Red Lake Falls	11	103	10.6	100.9	3	900	mean3-5	0.12	11/.00	δ.62 0.12	0.27	323.10	
Red Lake Falls	11	103	10.6	100.9	3	900	stadev3-5	0.00	2.00	0.12	0.00	1.58	
Red Lake Falls	11	103	10.6	100.9	3	900	coetvar3-5	1.71	1.71	1.37	1.37	0.49	

Appendix J – Modified DCP Test Form and Instructions

SP Material			Highway Date				Engineer Notes					Inspect	or				
Proce(SEAT = 1	• Enter Pr • Enter Pr Pen28bus	oject info anu - <i>Pen</i> ostanus sion	d Gradati DP1	on Data. = Pen ₅₃	Calculi <u>iows - Pé</u> 3 <i>blows</i>	ate the	Grading [†]	Number (GI Hard Co • Deti	N) (electroni <u>py</u> ermine the t	ic version - est locatio	calculated on and com	automatii Juct the l	cally) DCP test.	oti oti o			
	• Determin • Determin • Enter thi • The test	ne the test lo the moistur Test Inform results will t	cation ar e content lation anc be determ	id condu (MC) a) DCP D; ined aut	ct the D t the DC ata in tal omatica	CP tes P test ble.	t. location.	C C U U U U	er the Test I er the Test I ablish the a npute SEA npare SEA	unsture co Information Ilowable v and <i>DPI</i>	n and DCP alues for <i>St</i> test result to Maximu	at the D Data in t E AT and s. Im Requi	or test it able. DPI base rements.	ocariori. Both musi	and <i>M</i> C. t pass to s	iccept te	<u>98t</u> .
Gradat	tion D	ata (_{use %}	% passing	<u>ı in form</u>	<u>ulas)</u>		enetr	ation F	equirer	<u>nents</u>							
$GM = \frac{1^{+}+3}{2}$	1 + 3% -	+#4+#10+#2 100	40 + #200	[GN	MC MC (% dny)	laximum Ma llowable All. SEAT (in (in) (in	iximum owable Ap D.Pl T(Vblow)	proximate est Layer (in)	GN	MC (% dry)	Maximum Allowable SEAT (in)	Maximum Allowable DP1 (in/blow)	Approxime Test Laye (in)	late 'er
J - 1		Sieve 1"	% Pas	sing		<u> </u>	3.1-3.5	<5.0 5.0-8.0	1.6 1.6	0.5 4	10-6.0	46-5.0	<5.0 5.08.0	26 30	0.6 0.7	5.0 - 7.0	
		3/4" 3/8"						> 8.0 > 6.0	1.6 1.6	0.6	T		>8.0 \£0	3.4	60		
		巷 0节					36-4.0	50-8.0	0.1 7.1 2.4	0.6	0.9 - 0.1	5.1-5.5	5.08.0 5.08.0	3.7	00 00 00 00 00 00 00 00 00 00 00 00 00	6.0 - 12.(0
		#40				-	F	<5.0 <5.0	2.0	0.5	Ē	Ī	<50 <50	40	80		È
		#200 GN =					4.1-4.5	50-8.0 >8.0	2.4 2.8	0.7 4	t0-6.0	5.6-6.0	5.08.0 >8.0	45 49	0.9 1.1	7.0 - 12.1	Q.
DCPE	<u>)ata</u>		ic DCP Mea	surements	; (check if	Metric,	un-check to	return to En	glish)								
		Test Infor	mation			Η	Requin	ements		CP Data ((ii)			Test Resi	ults		Π
Test #	Date	Station	Offset	Test Layer Depth (in)	NO NO		faximum Niowable EAT (in)	Maximurr Allowable DPI (in/blow)	r Initial Reading	Reading after seating (2 Blows)	Reading after test i (3 Blows)	SEAT (in)	SEAT: Pass or Fail	DPI (in/biow)	PPI: Pass Pass Pass Pail	<u>بتا</u> مح Adequate	ST: ass ail
				,			× /	× •		,		,	 			!	
																+	\top
																+	
								-									\square

Modified DCP Procedure: 2005-06 (English)

(1) [Reading after test (3 Blows) - Initial Reading] < Test Layer Depth = Adequate Layer

5-692.255 mod MODIFIED DYNAMIC CONE PENETROMETER (DCP)

History and Development

The Dynamic Cone Penetrometer was first introduced to the Minnesota Department of Transportation (Mn/DOT) at the Minnesota Road Research Project (Mn/ROAD). Since 1993 the DCP has been used by Mn/DOT as an acceptance tool for the compaction of pavement edge drain trenches. In 1999, the Penetration Index Method for compaction acceptance of base aggregate Classes 5, 6, and 7 was adapted by Mn/DOT, which requires the use of the DCP as the testing device.

Description of Device

The Dynamic Cone Penetrometer consists of two 16 mm (5/8-inch) diameter shafts coupled near the midpoint. The lower shaft contains an anvil and a pointed tip, which is driven into unbound materials by dropping a sliding hammer contained on the upper shaft onto the lower anvil. The strength is determined by measuring the penetration of the lower shaft into the unbound materials. This value is recorded in millimeters (inches) per blow and is know as the Penetration Index (PI).

Equipment

The DCP is comprised of the following elements. (See Fig. 1 5-692.255 mod)

- Handle: The handle is located at the top of the device. It is used to hold the DCP shafts plumb and to limit the upward movement of the hammer.
- Hammer: The 8 kg (17.61 lb.) Hammer is manually raised to the bottom of the handle and then dropped (allowed to free fall) to transfer energy through the lower shaft to the cone tip. The upper shaft guides the hammer.
- Upper Shaft: The upper shaft is a 16 mm (5/8-inch) diameter steel shaft on which the hammer moves. The length of the upper shaft allows the hammer to drop a distance 575 mm (22.6 inches).
- Anvil: The anvil serves as the lower stopping mechanism for the hammer. It also serves as a connector between the upper and lower shaft. This allows for disassembly, which reduces the size of the instrument for transport.
- Lower Shaft: The lower shaft is a 16 mm (5/8-inch) diameter steel shaft, of variable length up to 1 m (39.4 inches) in length, marked in 5mm (0.2-inch) increments for recording the penetration after each hammer drop.

Cone: The cone measures 20 mm (0.787-inch) in diameter. The cone tip has a 60-degree angle. (See Fig. 2 5-692.255 mod)

Operation Points of Caution

Always use caution to avoid pinching fingers between the hammer and the anvil during testing, use the handle to hold shafts plumb. Do not hold the DCP near the anvil area.

It is important to lift the hammer slowly and drop it cleanly, allowing it to rest on the anvil for at least one second before raising it for another drop. Lifting and dropping too rapidly may affect results because the hammer's full energy may not be allowed to transfer to the lower shaft. This will cause incorrect test results.

Test Procedure - Base Aggregate (2211.3C3)

Record the gradation % passing values that represent the area to be tested by the DCP, on the attached Modified DCP Procedure 2005-06 form or spreadsheet. If using the form, calculate the Grading Number (GN) by using the formula on the form. If using the spreadsheet, the computer calculates this information. (See Fig. 3 5-692.255 mod)

Locate a level and undisturbed area (test site) that is representative of the material to be tested.

Record the Test #, Date, Station, Offset, and Test Layer Depth on the Modified DCP Procedure 2005-06 form or spreadsheet, in the DCP Data table. (See Fig. 3 5-692.255 mod)

Place the DCP device on the base aggregate test site. Record the initial reading using the graduated rule on the DCP. The measurement is taken to the nearest 2.5 mm (0.1 inch). (Place this information on the attached Modified DCP Procedure 2005-06 form or spreadsheet, in the DCP Data table, under **Initial Reading** column.)

To properly seat the DCP (cone tip), two hammer blows are required. Therefore, carefully raise the sliding weighted hammer until it meets the handle, and then release the hammer under its own weight. Repeat this process one more time for a total of two complete blows.

Record the penetration measurement after seating using the graduated rule on the DCP. The measurement is taken to the nearest 2.5 mm (0.1 inch). (Place this information on the attached Modified DCP Procedure 2005-06 form or spreadsheet, in the DCP Data table, under **Reading after seating (2 blows)** column.) (See Fig. 3 5-692.255 mod)

Carefully raise the hammer until it meets the handle, and then release the hammer under its own weight. Repeat this process two more times for a total of three times.

Record the final penetration measurement using the graduated rule on the DCP. The measurement is taken to the nearest 2.5 mm (0.1 inches). (Place this information on the attached Modified DCP Procedure 2005-06 form or spreadsheet, in the DCP Data table, under **Reading after test (3 blows)** column.) (See Fig. 3 5-692.255 mod)

After using the DCP, obtain a sample of material and determine the moisture content of the aggregate base by using the pan drying method or a Super Speedy. Record the moisture content on the Modified DCP Procedure 2005-06 form or spread sheet, in the DCP Data table, under MC (%) column. (See Fig. 3 5-692.255 mod)

If using the Modified DCP Procedure 2005-06 form, fill in the **Maximum Allowable SEAT** & **Maximum Allowable DPI** columns; this information is in the Penetration Requirements table by using the recorded **GN** & **MC**. Next calculate the **SEAT** by using the following formula:

SEAT = Reading after seating (2 blows) – Initial Reading

Compare the calculated **SEAT** and compare it the **Maximum Allowable SEAT column**, if **SEAT** is larger than the **Maximum Allowable SEAT**, the **SEAT** <u>fails</u>. If the **SEAT** is smaller than the **Maximum Allowable SEAT**, the **SEAT** <u>passes</u>.

Next calculate the **DPI** by using the following formula:

$DPI = \frac{\{\text{Reading after test (3 blows)} - \text{Reading after seating (2 blows)}\}}{3}$

Compare the calculated **DPI** and compare it the **Maximum Allowable DPI** column, if the **DPI** is larger than the **Maximum Allowable DPI**, the **Ave. DPI** <u>fails</u>. If the **DPI** is smaller than the **Maximum Allowable DPI**, the **DPI** <u>passes</u>.

Next determine the Adequate Layer? by using the following formula:

Adequate Layer? = {Reading after test (3 blows) – Initial Reading} < Test Layer Depth

If the {Reading after test (3 blows) – Initial Reading} is larger than the Test Layer Depth, the answer is No. If the {Reading after test (3 blows) – Initial Reading} is less than the Test Layer Depth, the answer is Yes.

To determine whether the **Test Pass or Fail**, check the **Seat Pass or Fail**, **DPI Pass or Fail**, and **Adequate Layer?** columns, if any of the three columns has Fail or No, the **Test** <u>Fails</u>. If all three columns have Pass or Yes, the **Test** <u>Passes</u>.

If using the Modified DCP Procedure 2005-06 spreadsheet, all the above information is calculated by the computer and to determine if the test passes or fails look in the **Test Pass or Fail** column for the answer. (See Fig. 3 5-692.255 mod)

For test purposes, the approximate test layer in compacted thickness is located in the Penetration Index chart on Fig. 3 5-692.255 mod.

Test Procedure - Granular Subgrade Material (2105.3F3)

Record the gradation % passing values that represent the area to be tested by the DCP, on the attached Modified DCP Procedure 2005-06 form or spreadsheet. If using the form, calculate the Grading Number (GN) by using the formula on the form. If using the spreadsheet, the computer calculates this information. (See Fig. 3 5-692.255 mod)

Locate a level and undisturbed area (test site) that is representative of the material to be tested.

Record the Test #, Date, Station, Offset, and Test Layer Depth on the Modified DCP Procedure 2005-06 form or spreadsheet, in the DCP Data table. (See Fig. 3 5-692.255 mod)

Place the DCP device on the granular material test site. Record the initial reading using the graduated rule on the DCP. The measurement is taken to the nearest 2.5 mm (0.1 inch). (Place this information on the attached Modified DCP Procedure 2005-06 form or spreadsheet, in the DCP Data table, under **Initial Reading** column.) (See Fig. 3 5-692.255 mod)

To properly seat the DCP (cone tip), two hammer blows are required. Therefore, carefully raise the sliding weighted hammer until it meets the handle, and then release the hammer under its own weight. Repeat this process one more time for a total of two complete blows.

Record the penetration measurement after seating using the graduated rule on the DCP. The measurement is taken to the nearest 2.5 mm (0.1 inch). (Place this information on the attached Modified DCP Procedure 2005-06 form or spreadsheet, in the DCP Data table, under **Reading after seating (2 blows)** column.) (See Fig. 3 5-692.255 mod)

Carefully raise the hammer until it meets the handle, and then release the hammer under its own weight. Repeat this process two more times for a total of three times.

Record the final penetration measurement using the graduated rule on the DCP. The measurement is taken to the nearest 2.5 mm (0.1 inches). (Place this information on the attached Modified DCP Procedure 2005-06 form or spreadsheet, in the DCP Data table, under **Reading after test (3 blows)** column.) (See Fig. 3 5-692.255mod)

After using the DCP, obtain a sample of material and determine the moisture content of the granular material by using the pan drying method or a Super Speedy. Record the moisture content on the Modified DCP Procedure 2005-06 form or spread sheet, in the DCP Data table, under **MC** (%) column. (See Fig. 3 5-692.255 mod)

If using the Modified DCP Procedure 2005-06 form, fill in the **Maximum Allowable SEAT** & **Maximum Allowable DPI** columns; this information is in the Penetration Requirements table by using the recorded **GN** & **MC**. Next calculate the **SEAT** by using the following formula:

SEAT = Reading after seating (2 blows) - Initial Reading

Compare the calculated **SEAT** and compare it the **Maximum Allowable SEAT column**, if **SEAT** is larger than the **Maximum Allowable SEAT**, the **SEAT** <u>fails</u>. If the **SEAT** is smaller than the **Maximum Allowable SEAT**, the **SEAT** <u>passes</u>.

Next calculate the **DPI** by using the following formula:

$DPI = \frac{\{\text{Reading after test (3 blows)} - \text{Reading after seating (2 blows)}\}}{3}$

Compare the calculated **DPI** and compare it the **Maximum Allowable DPI** column, if the **DPI** is larger than the **Maximum Allowable DPI**, the **Ave. DPI** <u>fails</u>. If the **DPI** is smaller than the **Maximum Allowable DPI**, the **DPI** <u>passes</u>.

Next determine the Adequate Layer? by using the following formula:

Adequate Layer? = {Reading after test (3 blows) – Initial Reading} < Test Layer Depth

If the {Reading after test (3 blows) – Initial Reading} is larger than the Test Layer Depth, the answer is No. If the {Reading after test (3 blows) – Initial Reading} is less than the Test Layer Depth, the answer is Yes.

To determine whether the **Test Pass or Fail**, check the **Seat Pass or Fail**, **DPI Pass or Fail**, and **Adequate Layer?** columns, if any of the three columns has Fail or No, the **Test** <u>Fails</u>. If all three columns have Pass or Yes, the **Test** <u>Passes</u>.

If using the Modified DCP Procedure 2005-06 spreadsheet, all the above information is calculated by the computer and to determine if the test passes or fails look in the **Test Pass or Fail** column for the answer. (See Fig. 3 5-692.255 mod)

For test purposes, a layer will be considered 300 mm (1-foot) in compacted thickness.

Test Procedure - Edge Drain Trench Filter Aggregate (2502)

After the compaction of the first 15 m (50 feet) of filter aggregate within the edge drain trench has been completed, determine the location of three test sites that are 3 m (10 feet) apart within that first 15 m (50 feet).

Calculate the number of hammer drops (blows) necessary to 'properly test the trench filter aggregate but not damage the edge drain pipe by subtracting 150 mm (6-inches) from the depth

of the trench to be tested and dividing that total by 75 for metric measurements or 3 for English measurements. If necessary, round this number <u>down</u> to the next whole number. (See Fig. 4 5-692.225 mod)

Example: If the trench depth equals 650 mm (26-inches). Then 650 mm (26-inches) minus 150mm (6 inches) equals 500 mm (20 inches). Then 500 mm (20 inches) divided by 75 (for Metric) or 3 (for English) equals 6.7 or 6.

Place the DCP on test site #1 and seat the coned tip of the device by slightly tapping the lower anvil with the hammer until the coned tip is just out of sight.

After seating, record the penetration measurement using the graduated rule on the DCP. The measurement is taken to the nearest 2.5 mm (0.1 inch). [Use form TP-2170 –02(rev 11/05)] (See Fig. 5 5-692.255 mod)

Carefully raise the hammer until it meets the handle, and then release the hammer under its own weight. Repeat this process until the total number of hammer drops equals the required number of blows as calculated in step 2. Also, beware and avoid the chance of penetrating the edge drain pipe at the bottom of the trench when the compaction of the trench is less than passing.

Record the final penetration measurement from the graduated rule on the DCP. The measurement is taken to the nearest 2.5 mm (0.1 inch).

Subtract the measurement in step 4 from the measurement in, step 6 and then divide the difference of the measurements by the number of blows required for testing. The result is the penetration index. If necessary, follow the formula on the test form to convert from mm to inches.

Use the same procedures as outlined above for testing sites #2 and #3.

Add the three penetration index results from test site #1, #2, and #3 and divide that total by 3 in order to calculate the average of all three tests. Round off the average of the tests to the nearest 1 mm (0.1-inch). (See Grading and Base Manual 5-692.805)

Maintenance and Handling

Because the Dynamic Cone Penetrometer is driven into the ground, sometimes into very hard soil layers, regular maintenance and care are required. To ensure that the DCP operates properly, the following guidelines must be followed.

Monitor the condition of the connections to the anvil and handle. When the connections uses bolts, pins, or set screws, extra bolts, pins, or set screws should be kept in the DCP carrying cases because they frequently become stripped or broken and may need to be replaced during testing. Keep the upper shaft clean. Lubricate very lightly with oil if binding develops. Frequently wipe both shafts clean with a soft cloth during use.

Monitor the DCP for excessive wear on any of the components and make repairs as needed. Because the DCP is a standardized testing device, its overall weight and dimensions must not change from specifications.

The cone tip should be replaced when the diameter of its widest section is reduced by more than 10 percent (2 mm [0.08 inch]) or rocks gouge the cone's surface. Inspect the cone tip before and after each test. Nevertheless, the cone tip should be replaced at least once a year.

Never extract the DCP from the test hole by forcefully striking the hammer against the handle. Striking the handle causes accelerated wear and may lead to broken welds and connections. At least once a year, all welds on the DCP should be critically inspected for hairline or larger cracks.

Do not lay the device on the ground when not in use. The DCP should be kept in its carrying case to avoid bending the shafts. Straightness of the shafts is extremely important. The hammer cannot free fall if the shafts are bent. The straightness of the shafts should be critically measured and reviewed each year prior to the start of construction season.

Appendix K – Field Data Sheets

LWD, DCP, & SC TEST DATA GRADING & BASE CONSTUCTION

OFTRAN			т.н.			Page No:				
					·					
Test No.										
Date										
Inspector Initials or Cert. I										
				Location Da	ta		1			
Station										
Roadway Lane and Offset										
Depth from Grading Grade	e									
		Material Da	ta		•		-			
Material Type										
Dry Density Measured (pc										
Dry Measured Moisture Co	ontent (%)									
Proctor Max Dry Density (pcf)									
Proctor Optimum Moisture (%)										
				LWD Data						
LWD Plate Diameter (mm)										
LWD Drop Height (mm)										
LWD Falling Mass (kg)										
	4th Drop	μm								
Deflection	5th Drop	μm								
	6th Drop	μm								
Modulus (Evd)	Average	MPa								
	4th Drop	kN								
Force (if measured)	5th Drop	kN								
	6th Drop	kN								
				Notes:						
(1) Locate the weakest are	a to be tested	Ι.								
(2) Upper 50 to 100 mm (2" – 4") of soil should be removed to produce a flat testing area, especially on non-granular soil										anular soils.
(3) The surface should be level so that the shaft is vertical and plate must be in full contact with the surface.										
(4) The LWD should be turned on for at least 1 minute prior to testing.										
(5) Drop the LWD weight three (3) times for seating [1 st , 2 nd , 3 rd drop].										
(6) Drop the LWD weight three (3) times for testing and collect & record the data points for the 4 th , 5 th , 6 th drop.										
(7) The deflection range should be between 0.3 to 3.0 mm to obtain reliable measurements.										
(8) Plate diameter should be 200 mm (8"), drop height should be 500 mm (19.7"), and mass should be 10 kg (22.1 lbs).										2.1 lbs).
(9) The soil influenced by the LWD extends about 1 plate diameter deep and 1 plate diameter laterally.										
				DCP Data		mener //s lasses				ine ine //e lie i i i
la Mal Dana	P		mm	mm/biow	mm	mm/blow	mm	mm/blow	mm	mm/diow
2na Blov	N									
Stn Blov	v 									
	w									
15th Blo	w				1	1	I			

20th Blow
		LW	/D Plate Fo	rce and Str	ess	1	1
	-						
Plate D	liameter	Plate	Area	Fo	orce	Str	ess
mm	in	mm⁻́	in [∠]	kN	kips	MPa	psi
					r		
100	4	7,854	12	5	1.12	0.64	92
150	6	17,671	27	5	1.12	0.28	41
200	8	31,416	49	5	1.12	0.16	23
300	12	70,686	110	5	1.12	0.07	10
100	4	7,854	12	6	1.35	0.76	111
150	6	17,671	27	6	1.35	0.34	49
200	8	31,416	49	6	1.35	0.19	28
300	12	70,686	110	6	1.35	0.08	12
100	4	7,854	12	7	1.57	0.89	129
150	6	17,671	27	7	1.57	0.40	57
200	8	31,416	49	7	1.57	0.22	32
300	12	70,686	110	7	1.57	0.10	14
100	4	7,854	12	8	1.79	1.02	148
150	6	17,671	27	8	1.79	0.45	66
200	8	31,416	49	8	1.79	0.25	37
300	12	70,686	110	8	1.79	0.11	16
100	4	7,854	12	9	2.02	1.15	166
150	6	17,671	27	9	2.02	0.51	74
200	8	31,416	49	9	2.02	0.29	42
300	12	70,686	110	9	2.02	0.13	18
	Drop	Height	Estimate	ed Force	Estimate	ed Force	
			Dyn	atest	Zo	orn	
			Rubbe	r Buffer	Steel	Spring	
	cm	inches	kN	kips	kN	kips	
	25	10			4.2	0.95	
	50	20	5.5	1.23	6.0	1.34	
	75	30			7.3	1.64	
	90	35			8.0	1.79	

*Estimated force for Dynatest is calibrated by testing preformed throughout this report *Estimated force for Zorn is calibrated by Zorn manufactures

Appendix L – Construction Site Analysis of Target Values

Construction Site Analysis of Light Weight Deflectometer and Dynamic Cone Penetrometer Target Values

Prepared for:

Minnesota Department of Transportation

January 30, 2009

Prepared by: Ryan L. Peterson Mike A. Davis CNA Consulting Engineers 2800 University Avenue SE Minneapolis, MN 55414 (612) 379-8805

Table of Contents

1	Introductio	n4
	1.1 Report	Background and Purpose 4
2	Testing Pro	tocol
	2.1 Site Lo	cation and Schedule
	2.2 Descrip	otion of Field Tests
	2.2.1	Test Sequence 5
	2.2.2	Test Locations 5
	2.2.3	Zorn Light Weight Deflectometer 7
	2.2.4	Dynatest Light Weight Deflectometer 7
	2.2.5	Dynamic Cone Penetrometer 8
	2.2.6	Nuclear Gauge
	2.2.7	Sand Cone 8
	2.3 Descrip	otion of Laboratory Tests 8
	2.3.1	Sieve Analysis and Plasticity 8
	2.3.2	Moisture-Density Relationship 8
	2.3.3	Gravimetric Moisture Content 8
3	Measureme	nts and Analysis
	3.1 Field T	Fest Results 9
	3.1.1	Density 9
	3.1.2	Moisture Content 11
	3.1.3	Dynamic Cone Penetrometer 12
	3.1.4	Light Weight Deflectometer 15
	3.2 Labora	tory Test Results 17
	3.3 Target	Value Analysis
	3.3.1	DPI Target Values
	3.3.2	Zorn Deflection Target Values
	3.3.3	Comparison of Pass/Fail Criteria24
4	Summary	

List of Tables

Table 1 - Test Locations	5
Table 2 - Summary of Density Testing	. 10
Table 3 - Summary of Gravimetric Moisture Contents	. 11
Table 4 - Summary of Dynamic Cone Penetrometer Testing	. 14
Table 5 - LWD Deflection	. 16
Table 6 - Mn/DOT Standard Proctor and Plastic Limit Testing	. 18
Table 7 - AET Standard Proctor Testing	. 18
Table 8 - Comparison of Tests	. 19
Table 9 - Pass/Fail Comparison of Plastic Soils	. 24
Table 10 - Pass/Fail Comparison of Non-Plastic Soils	. 25

List of Figures

Figure 1 - Comparison of Density Measurements	. 9
Figure 2 - Comparison of Nuclear and Oven Dried Moisture Contents	12
Figure 3 - DCP Soil Profile	13
Figure 4 - Comparison of Dry Density and DPI	15
Figure 5 - Comparison of Deflection Measurements	17
Figure 6 - Mn/DOT and AET Proctors	19
Figure 7 - Comparison of DPI and Zorn Deflection	21
Figure 8 - DPI vs. Moisture Content and Target Values	22
Figure 9 - Zorn Deflection vs. Moisture Content and Target Values	23

Introduction

Report Background and Purpose

The objective of this project is to implement data analysis procedures for the Light Weight Deflectometer (LWD) and the Dynamic Cone Penetrometer (DCP), comparing the test results to companion moisture content tests and to proposed LWD and DCP target values developed by Mn/DOT. The goal is to relate the quality control and quality assurance on the job site to the material properties used during the pavement design. The LWD and DCP testing methods provide an effective way to make this link.

This report discusses the testing and the results from a site located in Olmsted County, near Rochester. American Engineering Testing, Inc. (AET) provided the nuclear density testing as well as the moisture content of the samples. AET also provided the use of a Dynatest LWD. Mn/DOT provided the use of a Zorn LWD. CNA Engineers performed the LWD and DCP testing.

Testing Protocol

Site Location and Schedule

The test site was located along a portion of County State Aid Highway (CSAH) 2 in Rochester, Minnesota. The CSAH 2 Reconstruction project consisted of expanding a portion of the existing two-lane road to a four-lane road with center median and turn lanes. Visits were made to the site on September 10, 18, and 26 and on October 1 and 2. During the site visits, subgrade soils were tested using the methods discussed in Section 0. AET was onsite during each visit performing all density tests and many companion laboratory tests.

Description of Field Tests

Test Sequence

A test area approximately 100 feet long by 10 feet wide was chosen upon arriving at the site. Within this test area, three test pads were marked and prepared for testing. These test pads were approximately five feet by five feet with one test at each corner. The test pads were prepared by scraping off the top two to three inches of soil to make a flat level surface. After preparing the surface, in-situ testing was completed at each location using the LWD (Zorn and Dynatest), followed by nuclear gauge, sand cone, and DCP. Approximately two sand cones were performed each day. The sand cones were generally performed at locations containing seemingly inconsistent or irregular soils and were used to verify the nuclear gauge readings. After testing by AET and for plastic limit testing by Mn/DOT. Representative soil samples were taken from each five foot by five foot test pad for standard moisture-density Proctor, sieve analysis and plasticity testing by Mn/DOT. AET took additional representative soil samples according to industry standard practice for moisture-density Proctor testing.

Test Locations

The test pads were prepared with 4 tests at each pad. The test pads were labeled A to O for a total of 15 test pads and each test within a pad was numbered 1 to 4 for a total of 60 tests. Tests are referred to in this report and in all field and laboratory notes by test number followed by pad letter (e.g. the test location of test 2 in the third test pad is labeled 2C). **Table 1** lists each test location.

Date	Test	Station	Offset
9/10/2008	1A	152+00	Back of the westbound curb
9/10/2008	2A	152+05	Back of the westbound curb
9/10/2008	ЗA	152+05	5' right of the back of the westbound curb
9/10/2008	4A	152+00	5' right of the back of the westbound curb
9/10/2008	1B	152+40	Back of the westbound curb
9/10/2008	2B	152+45	Back of the westbound curb
9/10/2008	3B	152+45	5' right of the back of the westbound curb
9/10/2008	4B	152+40	5' right of the back of the westbound curb
9/10/2008	1C	152+80	Back of the westbound curb
9/10/2008	2C	152+85	Back of the westbound curb
9/10/2008	3C	152+85	5' right of the back of the westbound curb
9/10/2008	4C	152+80	5' right of the back of the westbound curb

т	able	1	-	Test	Loca	tions
	abic			1030	LOCO	

Date	Test	Station	Offset
9/18/2008	1D	150+49	10' right of the back of the westbound curb
9/18/2008	2D	150+54	10' right of the back of the westbound curb
9/18/2008	3D	150+54	15' right of the back of the westbound curb
9/18/2008	4D	150+49	15' right of the back of the westbound curb
9/18/2008	1E	151+00	10' right of the back of the westbound curb
9/18/2008	2E	151+05	10' right of the back of the westbound curb
9/18/2008	3E	151+05	15' right of the back of the westbound curb
9/18/2008	4E	151+00	15' right of the back of the westbound curb
9/18/2008	1F	151+71	10' right of the back of the westbound curb
9/18/2008	2F	151+76	10' right of the back of the westbound curb
9/18/2008	3F	151+76	15' right of the back of the westbound curb
9/18/2008	4F	151+71	15' right of the back of the westbound curb
9/26/2008	1G	148+00	16' right of the back of the westbound curb
9/26/2008	2G	148+05	16' right of the back of the westbound curb
9/26/2008	3G	148+05	21' right of the back of the westbound curb
9/26/2008	4G	148+00	21' right of the back of the westbound curb
9/26/2008	1H	148+50	16' right of the back of the westbound curb
9/26/2008	2H	148+55	16' right of the back of the westbound curb
9/26/2008	3H	148+55	21' right of the back of the westbound curb
9/26/2008	4H	148+50	21' right of the back of the westbound curb
9/26/2008	11	149+00	16' right of the back of the westbound curb
9/26/2008	21	149+05	16' right of the back of the westbound curb
9/26/2008	31	149+05	21' right of the back of the westbound curb
9/26/2008	41	149+00	21' right of the back of the westbound curb
10/1/2008	1J	145+00	15' left of the back of the westbound curb
10/1/2008	2J	145+05	15' left of the back of the westbound curb
10/1/2008	3J	145+05	10' left of the back of the westbound curb
10/1/2008	4J	145+00	10' left of the back of the westbound curb
10/1/2008	1K	145+50	15' left of the back of the westbound curb
10/1/2008	2K	145+55	15' left of the back of the westbound curb
10/1/2008	3K	145+55	10' left of the back of the westbound curb
10/1/2008	4K	145+50	10' left of the back of the westbound curb
10/1/2008	1L	146+00	15' left of the back of the westbound curb
10/1/2008	2L	146+05	15' left of the back of the westbound curb
10/1/2008	3L	146+05	10' left of the back of the westbound curb
10/1/2008	4L	146+00	10' left of the back of the westbound curb
10/2/2008	1M	139+50	15' right of the back of the westbound curb
10/2/2008	2M	139+57	15' right of the back of the westbound curb
10/2/2008	3M	139+57	18' right of the back of the westbound curb
10/2/2008	4M	139+50	18' right of the back of the westbound curb
10/2/2008	1N	140+00	15' right of the back of the westbound curb
10/2/2008	2N	140+08	15' right of the back of the westbound curb
10/2/2008	3N	140+08	18' right of the back of the westbound curb
10/2/2008	4N	140+00	18' right of the back of the westbound curb
10/2/2008	10	140+50	15' right of the back of the westbound curb
10/2/2008	20	140+58	15' right of the back of the westbound curb
10/2/2008	30	140+58	18' right of the back of the westbound curb
10/2/2008	40	140+50	18' right of the back of the westbound curb

Zorn Light Weight Deflectometer

The Zorn LWD is a portable, light falling weight deflectometer which can be used to measure in-situ material deflection. The device consists of a control box, falling mass, guide rod, and a 200 mm diameter loading plate containing an imbedded accelerometer. A mass freely falls from a preset fixed height along the guide rod and impacts a steel spring at the lower end of the rod. On the rebound the mass is caught by the operator to control the amount of energy imparted to the soil. The deflection is a calculation based on an accelerometer measurement using the manufacturer's hard wired calibrated method.

Following is the testing procedure used for this project:

- 1. Locate a relatively smooth and level spot for the test.
- Assemble Zorn and turn it on.

Place the Zorn on the testing location, and then rotate it slightly to smooth out the contact surface.

Verify that the trigger mechanism is set to the calibrated drop height (approximately 50 cm). Press the start button on the control box.

Lift the weight until it connects with the trigger mechanism.

- Activate the trigger mechanism while holding the top of the guide rod to keep the instrument steady and vertical.
- Record the displacement displayed.

Repeat steps 6 through 8 until three drops have been performed.

Record the average displacement and modulus.

Repeat steps 6 through 10 until a total of six drops have been performed.

The first three drops are seating drops. The reason for the seating drops is that in general, deflections decrease after each drop is performed. Typically after three drops, the deflections become uniform and repeatable.

During testing, the Zorn must be held steady and vertical. The operator should ensure that surface is even and smooth.

Dynatest Light Weight Deflectometer

The Dynatest 3031 LWD is a portable, light falling weight deflectometer which can be used to measure in-situ material stiffness. The device consists of a handheld computer, mass, guide rod, load cell, velocity transducer and a 200 mm diameter plate. A mass freely falls from a known height along the guide rod and impacts a rubber buffer, which transfers the load to a load cell at the lower end of the rod. A velocity transducer, which protrudes through the center of the plate, measures velocity. Velocity is integrated to determine displacement and a time history of the impact load and displacement are displayed. The Dynatest weighs about 40 lbs with approximately half of its weight being in the falling mass (i.e. 22 lbs).

Following is the testing procedure used for this project:

2. Assemble the Dynatest and turn it on.

Turn on the handheld computer and load the program.

Place the Dynatest in the footprint of the Zorn.

Set the trigger mechanism to a 50cm drop height.

Lift the weight until it connects with the trigger mechanism.

Press the go button on the handheld computer.

Release the trigger mechanism while holding the top of the guide rod to keep the instrument steady.

Record the load and displacement displayed.

Repeat steps 5 through 8 until three tests have been performed.

Turn the Dynatest and handheld computer off and place them back in the case.

Seating drops were not completed for the Dynatest, since measurements were performed in the same footprint as the Zorn.

Dynamic Cone Penetrometer

Dynamic Cone Penetrometer (DCP) measurements were performed according to ASTM D 6951-03. The DCP is a device that measures soil shear strength. It functions by striking a conetipped rod with an 8 kg mass, thereby driving the cone into the soil. The distance the cone penetrates is measured and the process is repeated until the desired depth is achieved. The recorded data is most commonly plotted as the penetration of the cone divided by the number of drops. This value is referred to as the DCP Penetration Index (DPI). The DPI is inversely proportional to strength.

Nuclear Gauge

A Troxler nuclear gauge was used to determine soil density and moisture at all test locations. AET performed all nuclear density testing according to ASTM D2922 standards. At each location, the probe was extended 12 inches into the soil and the measurement was performed.

Sand Cone

Sand cones were performed by AET to determine soil density and moisture according to ASTM D1556 standards.

Description of Laboratory Tests

Sieve Analysis and Plasticity

Sieve Analysis and plasticity was performed by Mn/DOT on select samples according to Mn/DOT standards.

Moisture-Density Relationship

Standard Proctor tests were performed by both Mn/DOT and AET. AET performed all Proctor tests according to ASTM D698 method A standards. Mn/DOT Proctor tests were performed according to Mn/DOT modified AASHTO T-99 method "C" standards. Soil samples collected by AET for Proctor testing were independent of the samples taken by Mn/DOT. The AET samples were collected using industry standard practice. The Mn/DOT samples were collected at a much higher frequency than typical of industry standards in order to better assess the soil variability. The test results from Mn/DOT Proctor tests are found in Table 6. Test results from Proctor tests performed by AET are found in Table 7. The variability in the results is very distinct and may be attributed to a number of reasons ranging from technique to sampling.

Gravimetric Moisture Content

Gravimetric moisture content was determined at all test locations by the oven dry method following ASTM D2216 standards. Samples were collected below the LWD footprint to a depth of approximately 6 inches immediately after field tests were complete. **Table 3** lists the gravimetric moisture content as measured by the oven dry method and the nuclear density gauge method.

Measurements and Analysis

Field Test Results

Density

The nuclear gauge method was used by AET to measure dry density and moisture at all locations. The sand cone method was used by AET to measure dry density and moisture content at selected locations. A comparison of the companion density measurements is shown in **Figure 1**. This comparison demonstrates that the nuclear density method estimates a slightly lower density than does the sand cone method. The depth at which the test is taken may play a part in the difference. The sand cone method only samples the soil up to approximately six inches while the nuclear gauge is run at a depth of twelve inches. This difference in depth may account for the variability of the density results. The DCP results indicate that there is increased penetration per drop at greater depth. This may be due to a lower density at depths greater than about six inches. Therefore, since the nuclear density gauge includes this deeper material, the nuclear density tends to be lower than the sand cone density.

Figure 1 - Comparison of Density Measurements

Table 2 lists the results of density testing performed for the project.

	Date Sampled:	9/10/2008
	Sand Cone	Nuclear Gauge
	Density	Density
Test	(pcf)	(pcf)
1A	-	110.70
2A	-	109.20
ЗA	118.2	118.50
4A	-	118.60
1B	-	113.50
2B	-	113.20
3B	-	117.20
4B	-	114.90
1C	123.5	112.80
2C	-	113.50
3C	-	118.50
4C	-	120.20
	Date Sampled:	9/26/2008
	Sand Cone	Nuclear Gauge
	Density	Density
Test	(pcf)	(pcf)
1G	-	107.30
2G	116.5	112.90
3G	-	108.30
4G	-	107.50
1H	-	104.20
2H	-	105.70
ЗH	-	107.80
4H	-	106.80
11	-	110.20
21	-	110.40
31	114.7	105.60
41	-	106.60
	Date Sampled:	10/2/2008
	Sand Cone	Nuclear Gauge
	Density	Density
Test	(pcf)	(pcf)
1M	-	131.30
2M	-	128.30
3M	-	128.40
4M	-	130.90
1N	-	128.10
2N	-	132.80
3N	-	134.70
4N	-	128.80
10	-	111.10
20	113.3	111.10
30	-	114.00
40	111.2	111.60

Table 2 - Summary of Density Testing

	Date Sampled:	9/18/2008		
	Sand Cone	Nuclear Gauge		
	Density	Density		
Test	(pcf)	(pcf)		
1D	-	106.20		
2D	-	105.00		
3D	-	107.60		
4D	-	108.70		
1E	110.5	103.10		
2E	-	106.50		
3E	-	110.20		
4E	-	108.50		
1F	-	96.90		
2F	-	95.20		
3F	-	97.60		
4F	100.5	93.60		
Date Sampled: 10/1/2008				
	Date Sampled:	10/1/2008		
	Date Sampled: Sand Cone	10/1/2008 Nuclear Gauge		
	Date Sampled: Sand Cone Density	10/1/2008 Nuclear Gauge Density		
Test	Date Sampled: Sand Cone Density (pcf)	10/1/2008 Nuclear Gauge Density (pcf)		
Test 1J	Date Sampled: Sand Cone Density (pcf) -	10/1/2008 Nuclear Gauge Density (pcf) 104.70		
Test 1J 2J	Date Sampled: Sand Cone Density (pcf) - -	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00		
Test 1J 2J 3J	Date Sampled: Sand Cone Density (pcf) - - -	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30		
Test 1J 2J 3J 4J	Date Sampled: * Sand Cone Density (pcf) - - - - -	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30 111.60		
Test 1J 2J 3J 4J 1K	Date Sampled: Sand Cone Density (pcf) - - - - - - 108.9	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30 111.60 109.10		
Test 1J 2J 3J 4J 1K 2K	Date Sampled: * Sand Cone Density (pcf) - - - - - 108.9 -	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30 111.60 109.10 107.50		
Test 1J 2J 3J 4J 1K 2K 3K	Date Sampled: * Sand Cone Density (pcf) - - - - 108.9 - - -	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30 111.60 109.10 107.50 109.30		
Test 1J 2J 3J 4J 1K 2K 3K 4K	Date Sampled: " Sand Cone Density (pcf) 108.9	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30 111.60 109.10 107.50 109.30 111.20		
Test 1J 2J 3J 4J 1K 2K 3K 4K 1L	Date Sampled: * Sand Cone Density (pcf) - - - - 108.9 - - - - - 108.9 - - - 107.3	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30 111.60 109.10 107.50 109.30 111.20 107.00		
Test 1J 2J 3J 4J 1K 2K 3K 4K 1L 2L	Date Sampled: " Sand Cone Density (pcf) 108.9 108.9 107.3 - 107.3	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30 111.60 109.10 107.50 109.30 111.20 107.00 107.50		
Test 1J 2J 3J 4J 1K 2K 3K 4K 1L 2L 3L	Date Sampled: * Sand Cone Density (pcf) - - - - 108.9 - - - - - - 107.3 - -	10/1/2008 Nuclear Gauge Density (pcf) 104.70 109.00 109.30 111.60 109.10 107.50 109.30 111.20 107.00 107.50 107.00 107.00		

Moisture Content

In addition to field moisture measurements determined by the nuclear density gauge soil samples were obtained from each test location for determination of moisture content using the oven dry method. Table 3 summarizes the moisture content results by date and test location.

Date Sampled: 9/10/2008			
	Oven Dried	Nuclear Density Gauge	
	Method	Method	
Test	(%)	(%)	
1A	24.6	14.7	
2A	19.5	14.9	
ЗA	14.8	12.7	
4A	15.7	12.6	
1B	15.1	15.8	
2B	14.1	14.5	
3B	13.6	14.4	
4B	16.8	16.6	
1C	12.7	13.7	
2C	17	13.5	
3C	16.7	15.4	
4C	17.2	15.6	
	Date Sam	pled: 9/26/2008	
	Oven Dried	Nuclear Density Gauge	
	Method	Method	
Test	(%)	(%)	
10	15.8	15.1	
26	15.0	13.0	
36	15.1	13.5	
1G	14.2	14.1	
	15	15.6	
2H	15.6	13.0	
311	14.9	12.0	
4H	14.8	13.5	
11	13.8	12.9	
21	15	13.9	
31	14.9	13.5	
4	14	12.7	
	Date Sam	piea: 10/2/2008	
	Oven Dried	Nuclear Density Gauge	
Test	Wiethod	Wethod	
rest	(%)	(%)	
IM	11.8	10.4	
2M	11.7	11.4	
3M	11.1	11	
4M	11.3	10.2	
	11.1	11.3	
2N	10.9	11.1	
3N	10.9	9.8	
4N	11.1	11	
10	19.2	16.9	
20	18.8	17.3	
30	15.7	14.2	
40	17.6	14.7	

Table 3 - Summary of Gra	avimetric Moisture Contents

	Date Sampled:	9/18/2008
	Oven Dried	Nuclear Density
	Method	Gauge Method
Test	(%)	(%)
1D	24.5	18.1
2D	22.9	19
3D	22.5	16.6
4D	20.8	17.2
1E	21.1	19.1
2E	21.4	19
3E	19.5	17.5
4E	20.9	18.6
1F	24.9	21.9
2F	24.9	23.7
3F	24.1	22.9
4F	24.9	24.9
	Date Sampled:	10/1/2008
	Date Sampled: Oven Dried	10/1/2008 Nuclear Density
	Date Sampled: Oven Dried Method	10/1/2008 Nuclear Density Gauge Method
Test	Date Sampled: Oven Dried Method (%)	10/1/2008 Nuclear Density Gauge Method (%)
Test 1J	Date Sampled: Oven Dried Method (%) 16.2	10/1/2008 Nuclear Density Gauge Method (%) 15
Test 1J 2J	Date Sampled: Oven Dried Method (%) 16.2 17.2	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7
Test 1J 2J 3J	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1
Test 1J 2J 3J 4J	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4 14.9	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1 11.7
Test 1J 2J 3J 4J 1K	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4 14.9 17.9	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1 11.7 15.8
Test 1J 2J 3J 4J 1K 2K	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4 14.9 17.9 19.1	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1 11.7 15.8 16.8
Test 1J 2J 3J 4J 1K 2K 3K	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4 14.9 17.9 19.1 17.5	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1 11.7 15.8 16.8 15
Test 1J 2J 3J 4J 1K 2K 3K 3K 4K	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4 14.9 17.9 19.1 17.5 16.2	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1 11.7 15.8 16.8 15 13.6
Test 1J 2J 3J 4J 1K 2K 3K 4K 1L	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4 14.9 17.9 19.1 17.5 16.2 17.7	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1 11.7 15.8 16.8 15.8 15 13.6 15.9
Test 1J 2J 3J 4J 1K 2K 3K 4K 1L 2L	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4 14.9 17.9 19.1 17.5 16.2 17.7 18.1	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1 11.7 15.8 16.8 15.8 16.8 15 13.6 15.9 15.3
Test 1J 2J 3J 4J 1K 2K 3K 4K 1L 2L 3L	Date Sampled: Oven Dried Method (%) 16.2 17.2 15.4 14.9 17.9 19.1 17.5 16.2 17.9 19.1 17.5 16.2 17.5 16.2 17.7 18.1 16.8	10/1/2008 Nuclear Density Gauge Method (%) 15 15.7 13.1 11.7 15.8 16.8 15.8 16.8 15 13.6 15.9 15.3 13.3

Figure 2 shows the comparison of gravimetric moisture contents as measured by the nuclear density gauge and the oven dry method. The soil samples collected for the oven dry method were taken to a depth of roughly six inches. This sampling depth is roughly twice the measurement depth of the nuclear density gauge. This difference in depth may account for some of the variation in the moisture content values. This comparison indicates that the nuclear density gauge tends to measure lower moisture contents, especially in soils that have high moisture content.

Figure 2 - Comparison of Nuclear and Oven Dried Moisture Contents

Dynamic Cone Penetrometer

A DCP test was conducted at each test location. Total penetration depths were generally 13 to 14 inches. Test procedures followed those described in Section 0.

The DCP is the sole device used in the demonstration that provides a profile of soil characteristics with depth in a near nondestructive manner. The soil profiles obtained by the DCP are useful for determining whether soft layers are present and at what depth the soft layers occur.

Figure 3 shows two soil profiles sampled with the DCP during this project. Note that the soil strength decreased in the first couple inches. This decrease in strength near the surface occurred in several of the tests and is likely a result of the surface having less confinement than the underlying soil. Because of this phenomenon, the first 3 drops were not included in the calculation of DPI for any of the tests.

Figure 3 – DCP Soil Profile

Measuring the soil profile is a benefit of the DCP; however, comparing the many DPI values obtained during each test to target values can be cumbersome. Other testing devices such as the LWD and nuclear density gauge obtain one value for each test. This value can be seen as a weighted average of the thickness of soil being measured based on the depth of influence of the measurement in the case of the LWD, or depth of the probe in the case of the nuclear density gauge. We used a simple weighted average method to obtain a single DPI value for each test based on drops 4 to 13. A weighting factor was determined for each drop based on the depth of penetration per drop. The weighted average for the test was then calculated by summing the product of weighting factors and corresponding DPI values. Weighted average DPI values ranged from 11.8 mm/drop to 68.3 mm/drop.

 Table 4 summarizes the DCP measurements.

9/10/2008			
DPI Weighte Average			
Test	(mm/drop)		
1A	26.2		
2A	42.4		
ЗA	12.2		
4A	12.4		
1B	25.5		
2B	26.2		
3B	33.9		
4B	30.8		
1C	15.2		
2C	19.0		
3C	21.8		
4C	21.2		

9/18/2008		
Test	DPI Weighted Average (mm/drop)	
1030	22.2	
2D	25.4	
3D	20.8	
4D	22.0	
1E	63.1	
2E	49.7	
3E	32.9	
4E	44.2	
1F	50.3	
2F	68.3	
3F	49.8	
4F	49.6	

<u> </u>			
9/26/2008			
	DPI Weighted		
	Average		
Test	(mm/drop)		
1G	15.6		
2G	13.7		
3G	14.4		
4G	14.0		
1H	13.8		
2H	13.7		
ЗH	14.4		
4H	14.7		
11	12.9		
21	13.9		
31	15.3		
41	16.2		

10/1/2008		
Test	DPI Weighted Average (mm/drop)	
1J	26.4	
2J	35.6	
3J	26.4	
4J	21.9	
1K	53.6	
2K	44.7	
3K	54.0	
4K	23.8	
1L	39.7	
2L	38.6	
3L	27.1	
4L	32.9	

Γ	10/2/2008			
	Test	DPI Weighted Average (mm/drop)		
	1M	12.5		
	2M	17.5		
	ЗM	14.4		
	4M	12.6		
	1N	12.9		
	2N	11.8		
	3N	12.3		
	4N	16.9		
	10	22.0		
	20	22.0		
	30	16.9		
	40	21.6		

Figure 4 shows the comparison of dry density and DPI. As the soil strength increases, the soil density tends to increase as well.

Figure 4 – Comparison of Dry Density and DPI

Light Weight Deflectometer

LWD tests were conducted at all 60 test locations, producing the results shown in Table 5. The tests followed the procedures identified in Sections 0 and 0. The deflection value for the Zorn is the average of drops 4, 5, and 6 (drops 1, 2, and 3 being seating drops) and the deflection value of the Dynatest is the average of drops 1, 2, and 3. The LWD tests may be conducted at various drop heights, yielding different stress states during testing. The Zorn is calibrated to deliver a force of 6.28 kN at a drop height of about 50 cm. Therefore, the height used for testing during this project using this particular Zorn LWD was 53 cm. To obtain similar surface stress, the Dynatest was set at the same drop height as the Zorn. Actual surface stress can be estimated using the recorded load cell data.

9/10/2008				
Tost	Zorn LWD Deflection	Dynatest LWD Deflection (mm)		
14	1 47	0.74		
2A	1.58	0.81		
3A	1.81	0.91		
4A	1.22	0.49		
1B	1.65	0.99		
2B	1.23	0.65		
3B	3.98	2.22		
4B	4.58	n/a		
1C	0.84	0.27		
2C	1.06	0.57		
3C	2.56	1.25		
4C	3.14	2.00		

Table 5 - LWD Deflection

9/18/2008				
Tost	Zorn LWD Deflection	Dynatest LWD Deflection (mm)		
1030	1 75			
2D	2.15	1.39		
3D	1.65	0.96		
4D	1.13	0.59		
1E	2.72	1.22		
2E	2.81	1.65		
3E	4.57	n/a		
4E	5.67	n/a		
1F	2.24	1.01		
2F	3.63	1.68		
3F	1.98	0.91		
4F	2.08	1.08		

9/26/2008				
	Zorn LWD Deflection	Dynatest LWD Deflection		
Test	(mm)	(mm)		
1G	1.12	0.43		
2G	0.94	0.38		
3G	1.21	0.50		
4G	1.33	0.59		
1H	0.69	0.31		
2H	0.83	0.44		
3H	1.04	0.50		
4H	0.89	0.31		
11	1.18	0.57		
21	1.33	0.56		
31	0.86	0.47		
41	0.97	0.31		

10/1/2008				
Test	Zorn LWD Deflection (mm)	Dynatest LWD Deflection (mm)		
1J	1.51	0.70		
2J	3.28	2.08		
3J	1.24	0.70		
4J	1.97	0.70		
1K	6.02	n/a		
2K	7.66	n/a		
3K	3.21	2.04		
4K	1.39	0.76		
1L	2.6	1.45		
2L	2.14	1.45		
3L	1.86	1.08		
4L	2.16	1.23		

10/2/2008				
Test	Zorn LWD Deflection (mm)	Dynatest LWD Deflection (mm)		
1M	1.32	0.59		
2M	2.09	1.29		
3M	2.06	1.19		
4M	1.44	0.64		
1N	1.41	0.70		
2N	1.71	0.97		
3N	1.65	1.16		
4N	2.32	1.34		
10	2.28	1.19		
20	1.71	0.93		
30	1.45	0.63		
40	2.01	1.02		

The scope of this project called for the use of the Zorn LWD, however, a Dynatest unit was made available by AET for no additional cost and was used at all test locations. A comparison of measured deflection between the Zorn and the Dynatest is shown in **Figure 5**. This relationship is generally consistent with previous measurements and is believed to be due to the different buffers which results in different load pulses. Recall that the Zorn LWD uses a steel spring buffer where as the Dynatest LWD uses rubber buffers. Also note that for both LWD instruments deflection measurements are independently verified by the manufacturer and that the drop height, falling mass, and plate sizes are identical.

Figure 5 - Comparison of Deflection Measurements

Laboratory Test Results

The laboratory tests consisted of Proctor tests and plastic limit tests. **Table 6** lists the Mn/DOT plastic limit and Proctor test results from each test area. One plastic limit test was performed for each test pad. The target values are based on the plastic limit of the soils and are used to determine if the soil passes or fails based on the combination of LWD or DCP and the gravimetric moisture content of the soil. Mn/DOT samples were collected at a rate of one sample per test pad.

		Maximum	Ontimum				
Data	Test Ded	Dry	Optimum		Crown		
Date	Test Pad	Density	woisture	AASHTU	Group	WIN/DO I	
Sampled	Sampled	(pcf)	(%)	Group	Index	Class	Plastic Limit*
9/10/2008	A	115.0	13.3	A-4	4	SiL	23.2
9/10/2008	В	115.3	12.9	A-4	3	SiL	23.2
9/10/2008	С	112.7	13.5	A-4	5	SiL	23.2
9/18/2008	D	104.9	18.4	A-4	0	Si	non-plastic
9/18/2008	E	109.5	16.8	A-4	11	Si	24.2
9/18/2008	F	105.2	18.0	A-6	13	SiCL	27.2
9/26/2008	G	112.2	14.3	A-4	0	Si	non-plastic
9/26/2008	Н	109.3	15.3	A-4	0	Si	non-plastic
9/26/2008	I	110.8	14.2	A-4	0	Si	non-plastic
10/1/2008	J	110.9	15.6	A-4	1	SiL	25.5
10/1/2008	K	111.8	15.5	A-4	0	Si	non-plastic
10/1/2008	L	110.0	15.6	A-4	0	Si	non-plastic
10/2/2008	М	123.0	11.0	A-4	1	SiL	18.7
10/2/2008	N	122.7	10.8	A-4	1	SiL	17.6
10/2/2008	0	109.7	15.1	A-4	5	Si	21.2

 Table 6 – Mn/DOT Standard Proctor and Plastic Limit Testing

* Plastic limit testing was performed on samples collected from test number 2 at each of the test pads.

The results from AET Proctor tests can be found in **Table 7**. AET Proctor testing and sampling was independent of the Mn/DOT sampling and testing. AET performed a Proctor test when the soil seemed to change in the field and a previous Proctor could not be applied to the current soil condition. As a result only 5 Proctors were performed by AET.

Date	Proctor	Maximum Dry Density	Optimum Moisture	AASHTO	
Sampled	Number	(pcf)	(%)	Group	Description
9/10/2008	1	111.7	16.8	A-7	Clay, brown
9/18/2008	2	101.5	20.2	A-6	Silty clay loam, brown
9/26/2008	3	109.1	16.0	A-4	Silt, brown
10/1/2008	4	109.5	16.7	A-4	Silt, brown
10/2/2008	5	106.6	18.3	A-4	Silt loam, bark brown

Table 7 – AET Standard Proctor Testing

Figure 6 is a comparison of both the AET Proctor tests and the Mn/DOT Proctor tests. There is a slight difference between the two labs which may be attributed to personnel, equipment or sampling location.

Table 8 summarizes the results of the density, DCP, Zorn LWD, plastic limit, and moisture content testing that was done. It is important to clarify that Olmsted County does not approve or reject soil based on density tests. The locations chosen were randomly selected and may or may not have been approved by the county inspector. The density results were meant only to show the relationship between the different methods used to measure compaction of the soil.

Test	AET Proctor Based Compaction	Mn/DOT Proctor Based Compaction	DPI (mm/drop)	Zorn Deflection (mm)	Plastic Limit (%)	Moisture Content (%)
1A	99%	96%	26.2	1.47	23.2	24.6
2A	98%	95%	42.4	1.58	23.2	19.5
ЗA	106%	103%	12.2	1.81	23.2	14.8
4A	106%	103%	12.4	1.22	23.2	15.7
1B	102%	98%	25.5	1.65	23.2	15.1
2B	101%	98%	26.2	1.23	23.2	14.1
3B	105%	102%	33.9	3.98	23.2	13.6
4B	103%	100%	30.8	4.58	23.2	16.8
1C	101%	100%	15.2	0.84	23.2	12.7
2C	102%	101%	19.0	1.06	23.2	17.0
3C	106%	105%	21.8	2.56	23.2	16.7
4C	108%	107%	21.2	3.14	23.2	17.2
1D	95%	101%	22.2	1.75	Non-plastic	24.5
2D	94%	100%	25.4	2.15	Non-plastic	22.9
3D	96%	103%	20.8	1.65	Non-plastic	22.5

 Table 8 – Comparison of Tests

Mn/DOT - Field Analysis of LWD and DCP Target Values

Test	AET Proctor Based Compaction	Mn/DOT Proctor Based Compaction	DPI (mm/drop)	Zorn Deflection (mm)	Plastic Limit	Moisture Content (%)
4D	97%	104%	22.4	1.13	Non-plastic	20.8
1E	102%	94%	63.1	2.72	24.2	21.1
2E	95%	97%	49.7	2.81	24.2	21.4
3E	99%	101%	32.9	4.57	24.2	19.5
4E	107%	99%	44.2	5.67	24.2	20.9
1F	95%	92%	50.3	2.24	27.2	24.9
2F	94%	90%	68.3	3.63	27.2	24.9
3F	96%	93%	49.8	1.98	27.2	24.1
4F	92%	89%	49.6	2.08	27.2	24.9
1G	98%	96%	15.6	1.12	Non-plastic	15.8
2G	103%	101%	13.7	0.94	Non-plastic	15.1
3G	99%	97%	14.4	1.21	Non-plastic	15.2
4G	99%	96%	14.0	1.33	Non-plastic	14.2
1H	96%	95%	13.8	0.69	Non-plastic	15.0
2H	97%	97%	13.7	0.83	Non-plastic	15.6
3H	99%	99%	14.4	1.04	Non-plastic	14.9
4H	98%	98%	14.7	0.89	Non-plastic	14.8
11	101%	99%	12.9	1.18	Non-plastic	13.8
21	101%	100%	13.9	1.33	Non-plastic	15.0
31	97%	95%	15.3	0.86	Non-plastic	14.9
41	98%	96%	16.2	0.97	Non-plastic	14.0
1J	96%	94%	26.4	1.51	25.5	16.2
2J	100%	98%	35.6	3.28	25.5	17.2
3J	100%	99%	26.4	1.24	25.5	15.4
4J	102%	101%	21.9	1.97	25.5	14.9
1K	100%	98%	53.6	6.02	Non-plastic	17.9
2K	98%	96%	44.7	7.66	Non-plastic	19.1
3K	100%	98%	54.0	3.21	Non-plastic	17.5
4K	102%	99%	23.8	1.39	Non-plastic	16.2
1L	98%	97%	39.7	2.60	Non-plastic	17.7
2L	98%	98%	38.6	2.14	Non-plastic	18.1
3L	98%	97%	27.1	1.86	Non-plastic	16.8
4L	98%	97%	32.9	2.16	Non-plastic	17.7
1M	-	107%	12.5	1.32	18.7	11.8
2M	-	104%	17.5	2.09	18.7	11.7
3M	-	104%	14.4	2.06	18.7	11.1
4M	-	106%	12.6	1.44	18.7	11.3
1N	-	104%	12.9	1.41	17.6	11.1
2N	-	108%	11.8	1.71	17.6	10.9
3N	-	110%	12.3	1.65	17.6	10.9
4N	-	105%	16.9	2.32	17.6	11.1
10	104%	101%	22.0	2.28	21.2	19.2
20	104%	101%	22.0	1.71	21.2	18.8
30	107%	104%	16.9	1.45	21.2	15.7
40	105%	102%	21.6	2.01	21.2	17.6

A comparison of measured DPI and Zorn deflection values is shown in **Figure 7**. As expected, the comparison shows that as DPI increases, the deflection tends to increase as well.

Figure 7 - Comparison of DPI and Zorn Deflection

Target Value Analysis

DPI Target Values

Mn/DOT supplied target values for comparison to DPI values. **Figure 8** shows weighted average DPI values versus oven dried gravimetric moisture content. This figure also includes the DPI target values for plastic limits of 15, 20, 25 and 30 percent. DPI target value curves can be used as pass/fail criteria. The target value criterion in this report is applied by first determining the plastic limit of the soil, then comparing the DPI of the test with the nearest curve that has a plastic limit equal to or less than the test value. If the DPI lies below the curve, the test passes. If it lies above, it fails.

Maximum DPI criteria should also be applied in combination with target value criteria. If maximum DPI criteria are not applied, subgrade strengths may not meet minimum design criteria. For this project, the following values were used as maximum DPI pass/fail criteria:

- Non-plastic soils = less than 25mm/drop
- Soils with a plastic limit from 15% to 19% = less than 25 mm/drop
- Soils with a plastic limit from 20% to 24% = less than 35 mm/drop
- Soils with a plastic limit from 25% to 29% = less than 45 mm/drop

Figure 8 - DPI vs. Moisture Content and Target Values

Zorn Deflection Target Values

Mn/DOT supplied target values for comparison to Zorn LWD values. **Figure 9** shows all Zorn deflection values versus oven dried gravimetric moisture content. This figure also includes the deflection target values for plastic limits of 15, 20, 25 and 30 percent. Target value curves can be used as pass/fail criteria. The target value criterion in this report is applied by first determining the plastic limit of the soil, then comparing the deflection of the test with the nearest curve with a plastic limit equal to or less than the test value. If the deflection lies below the curve, the test passes. If it lies above, it fails.

Maximum deflection criteria should also be applied in combination with target value criteria. If maximum deflection criteria are not applied, subgrade deflections may not meet minimum design criteria. For this project, the following values were used as maximum deflection pass/fail criteria:

- Non-plastic soils = less than 1.8 mm
- Soils with a plastic limit from 15% to 19% = less than 1.8 mm
- Soils with a plastic limit from 20% to 24% = less than 2.2 mm
- Soils with a plastic limit from 25% to 29% = less than 2.6 mm

○ tests for non-plastic material ◆ Tests for PL=15 to 19 ■ Tests for PL=20 to 24 ▲ Tests for PL=25 to 29

Figure 9 - Zorn Deflection vs. Moisture Content and Target Values

Comparison of Pass/Fail Criteria

Table 9 applies various pass/fail criteria to tests of plastic soils. Pass/fail criteria for percent compaction is based on 100% of standard Proctor. Pass/fail criteria for DPI is based on the curves and data shown in **Figure 8**. Pass/fail criteria for the Zorn LWD is based on the curves and data shown in **Figure 9**.

	Plastic	Nuclear Gauge	Sand Cone	DPI	Zorn Deflection
Test	(%)	Density	Density	Criteria	Criteria
1A	23.2	96%	-	Pass	Pass
2A	23.2	95%	-	Fail	Pass
ЗA	23.2	103%	103%	Pass	Pass
4A	23.2	103%	-	Pass	Pass
1B	23.2	98%	-	Pass	Pass
2B	23.2	98%	-	Fail	Pass
3B	23.2	102%	-	Fail	Fail
4B	23.2	100%	-	Pass	Fail
1C	23.2	100%	110%	Pass	Pass
2C	23.2	101%	-	Pass	Pass
3C	23.2	105%	-	Pass	Fail
4C	23.2	107%	-	Pass	Fail
1E	24.2	94%	101%	Fail	Fail
2E	24.2	97%	-	Fail	Fail
3E	24.2	101%	-	Pass	Fail
4E	24.2	99%	-	Fail	Fail
1F	27.2	92%	-	Fail	Pass
2F	27.2	90%	-	Fail	Fail
3F	27.2	93%	-	Fail	Pass
4F	27.2	89%	96%	Fail	Pass
1J	25.5	94%	-	Fail	Pass
2J	25.5	98%	-	Fail	Fail
3J	25.5	99%	-	Fail	Pass
4J	25.5	101%	-	Pass	Fail
1M	18.7	107%	-	Pass	Pass
2M	18.7	104%	-	Pass	Fail
3M	18.7	104%	-	Pass	Fail
4M	18.7	106%	-	Pass	Pass
1N	17.6	104%	-	Pass	Pass
2N	17.6	108%	-	Pass	Fail
3N	17.6	110%	-	Pass	Fail
4N	17.6	105%	-	Pass	Fail
10	21.2	101%	-	Pass	Pass
20	21.2	101%	103%	Pass	Pass
30	21.2	104%	-	Pass	Pass
40	21.2	102%	101%	Pass	Pass

Table 9 – Pass/Fail Comparison of Plastic Soils

Table 10 applies various pass/fail criteria to tests of non-plastic soils. Pass/fail criteria for relative density is based on 100% of standard Proctor. Pass/fail criteria for DPI is based on the curves and data shown in **Figure 8**. Pass/fail criteria for the Zorn LWD is based on the curves and data shown in **Figure 9**.

Test	Nuclear Gauge Relative Density	Sand Cone Relative Density	DPI Target Value Criteria	Zorn Deflection Target Value Criteria
1D	101%	-	Pass	Pass
2D	100%	-	Fail	Fail
3D	103%	-	Pass	Pass
4D	104%	-	Pass	Pass
1G	96%	-	Pass	Pass
2G	101%	104%	Pass	Pass
3G	97%	-	Pass	Pass
4G	96%	-	Pass	Pass
1H	95%	-	Pass	Pass
2H	97%	-	Pass	Pass
3H	99%	-	Pass	Pass
4H	98%	-	Pass	Pass
11	99%	-	Pass	Pass
21	100%	-	Pass	Pass
31	95%	-	Pass	Pass
41	96%	104%	Pass	Pass
1K	98%	97%	Fail	Fail
2K	96%	-	Fail	Fail
3K	98%	-	Fail	Fail
4K	99%	-	Fail	Pass
1L	97%	98%	Fail	Fail
2L	98%	-	Fail	Fail
3L	97%	-	Fail	Pass
4L	97%	-	Fail	Fail

 Table 10 – Pass/Fail Comparison of Non-Plastic Soils

Summary

Road work was done in Olmsted County during the 2008 construction season. Field tests were performed on subgrade soils with the Zorn LWD, Dynatest LWD, DCP, nuclear density gauge, and sand cone. Laboratory testing was done on samples obtained from the field including moisture content, standard Proctor, and plastic limit. DPI and Zorn deflection criteria provided by Mn/DOT and the 100% standard Proctor criterion were applied to the tests and compared. The test locations were not representative of the final subgrade. Most of the tests were performed when convenient and not necessarily after compaction was complete or accepted by Olmsted County.

The DCP results for plastic soils show good correlation with nuclear density gauge results. The DPI target value pass/fail criteria for plastic soils correlates well with the 100% standard Proctor criterion. In addition to being used as pass fail/criteria, DCP testing provides useful information about soil strength and soil profile data. The results for Zorn LWD for plastic soils were mixed. The Zorn target value pass/fail criteria for plastic soils do not correlate as well with the 100% standard Proctor criterion.

The results for non-plastic soils show good correlation between sand cone, Zorn, and DCP testing. The results show poor correlation between the nuclear density gauge and the other testing methods. Test pads G, H, and I all fail when applying the 100% standard Proctor criteria to nuclear gauge densities, but pass when applying the DPI and Zorn deflection criteria. Additionally, test pads G and I both pass when applying the 100% standard Proctor criteria to the sand cone densities. This difference between sand cone density and nuclear gauge density could be a result of the variable soils at the site, apparatus that were out of calibration, depth of sampling, or any other of a number of reasons. Regardless of the differences between density test methods, the application of 100% standard Proctor criteria to sand cone measurements correlates well with DPI and Zorn target value pass/fail criteria for non-plastic soils.

The testing methods and criteria discussed in this report are useful for analyzing properties of compacted material. Together, the methods give a good indication of the subgrade properties. However, none of these test methods should be used alone to determine final acceptance of subgrade compaction. Engineering judgment is always important.